本文實例講述了C#計算矩陣的逆矩陣方法。分享給大家供大家參考。具體如下:
1.代碼思路
1)對矩陣進行合法性檢查:矩陣必須為方陣
2)計算矩陣行列式的值(Determinant函數)
3)只有滿秩矩陣才有逆矩陣,因此如果行列式的值為0(在代碼中以絕對值小于1E-6做判斷),則終止函數,報出異常
4)求出伴隨矩陣(AdjointMatrix函數)
5)逆矩陣各元素即其伴隨矩陣各元素除以矩陣行列式的商
2.函數代碼
(注:本段代碼只實現了一個思路,可能并不是該問題的最優解)
/// <summary>/// 求矩陣的逆矩陣/// </summary>/// <param name="matrix"></param>/// <returns></returns>public static double[][] InverseMatrix(double[][] matrix){ //matrix必須為非空 if (matrix == null || matrix.Length == 0) { return new double[][] { }; } //matrix 必須為方陣 int len = matrix.Length; for (int counter = 0; counter < matrix.Length; counter++) { if (matrix[counter].Length != len) { throw new Exception("matrix 必須為方陣"); } } //計算矩陣行列式的值 double dDeterminant = Determinant(matrix); if (Math.Abs(dDeterminant) <= 1E-6) { throw new Exception("矩陣不可逆"); } //制作一個伴隨矩陣大小的矩陣 double[][] result = AdjointMatrix(matrix); //矩陣的每項除以矩陣行列式的值,即為所求 for (int i = 0; i < matrix.Length; i++) { for (int j = 0; j < matrix.Length; j++) { result[i][j] = result[i][j] / dDeterminant; } } return result;}/// <summary>/// 遞歸計算行列式的值/// </summary>/// <param name="matrix">矩陣</param>/// <returns></returns>public static double Determinant(double[][] matrix){ //二階及以下行列式直接計算 if (matrix.Length == 0) return 0; else if (matrix.Length == 1) return matrix[0][0]; else if (matrix.Length == 2) { return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]; } //對第一行使用“加邊法”遞歸計算行列式的值 double dSum = 0, dSign = 1; for (int i = 0; i < matrix.Length; i++) { double[][] matrixTemp = new double[matrix.Length - 1][]; for (int count = 0; count < matrix.Length - 1; count++) { matrixTemp[count] = new double[matrix.Length - 1]; } for (int j = 0; j < matrixTemp.Length; j++) { for (int k = 0; k < matrixTemp.Length; k++) { matrixTemp[j][k] = matrix[j + 1][k >= i ? k + 1 : k]; } } dSum += (matrix[0][i] * dSign * Determinant(matrixTemp)); dSign = dSign * -1; } return dSum;}/// <summary>/// 計算方陣的伴隨矩陣/// </summary>/// <param name="matrix">方陣</param>/// <returns></returns>public static double[][] AdjointMatrix(double [][] matrix){ //制作一個伴隨矩陣大小的矩陣 double[][] result = new double[matrix.Length][]; for (int i = 0; i < result.Length; i++) { result[i] = new double[matrix[i].Length]; } //生成伴隨矩陣 for (int i = 0; i < result.Length; i++) { for (int j = 0; j < result.Length; j++) { //存儲代數余子式的矩陣(行、列數都比原矩陣少1) double[][] temp = new double[result.Length - 1][]; for (int k = 0; k < result.Length - 1; k++) { temp[k] = new double[result[k].Length - 1]; } //生成代數余子式 for (int x = 0; x < temp.Length; x++) { for (int y = 0; y < temp.Length; y++) { temp[x][y] = matrix[x < i ? x : x + 1][y < j ? y : y + 1]; } } //Console.WriteLine("代數余子式:"); //PrintMatrix(temp); result[j][i] = ((i + j) % 2 == 0 ? 1 : -1) * Determinant(temp); } } //Console.WriteLine("伴隨矩陣:"); //PrintMatrix(result); return result;}/// <summary>/// 打印矩陣/// </summary>/// <param name="matrix">待打印矩陣</param>private static void PrintMatrix(double[][] matrix, string title = ""){ //1.標題值為空則不顯示標題 if (!String.IsNullOrWhiteSpace(title)) { Console.WriteLine(title); } //2.打印矩陣 for (int i = 0; i < matrix.Length; i++) { for (int j = 0; j < matrix[i].Length; j++) { Console.Write(matrix[i][j] + "/t"); //注意不能寫為:Console.Write(matrix[i][j] + '/t'); } Console.WriteLine(); } //3.空行 Console.WriteLine();}
3.Main函數調用
static void Main(string[] args){ double[][] matrix = new double[][] { new double[] { 1, 2, 3 }, new double[] { 2, 2, 1 }, new double[] { 3, 4, 3 } }; PrintMatrix(matrix, "原矩陣"); PrintMatrix(AdjointMatrix(matrix), "伴隨矩陣"); Console.WriteLine("行列式的值為:" + Determinant(matrix) + '/n'); PrintMatrix(InverseMatrix(matrix), "逆矩陣"); Console.ReadLine();}
4.執行結果
希望本文所述對大家的C#程序設計有所幫助。
新聞熱點
疑難解答