亚洲香蕉成人av网站在线观看_欧美精品成人91久久久久久久_久久久久久久久久久亚洲_热久久视久久精品18亚洲精品_国产精自产拍久久久久久_亚洲色图国产精品_91精品国产网站_中文字幕欧美日韩精品_国产精品久久久久久亚洲调教_国产精品久久一区_性夜试看影院91社区_97在线观看视频国产_68精品久久久久久欧美_欧美精品在线观看_国产精品一区二区久久精品_欧美老女人bb

首頁 > 學院 > 開發設計 > 正文

Tarjan算法查找強聯通組件的程序

2019-11-14 10:27:06
字體:
來源:轉載
供稿:網友

本文給出了C++程序和Python程序。

tarjan算法是由Robert Tarjan提出的求解有向圖強連通分量的線性時間的算法。

程序來源:Tarjan’s Algorithm to find Strongly Connected Components。

百度百科:tarjan算法。

維基百科:Tarjan's strongly connected components algorithm。 

參考文章:Tarjan算法。

C++程序:

// A C++ PRogram to find strongly connected components in a given// directed graph using Tarjan's algorithm (single DFS)#include<iostream>#include <list>#include <stack>#define NIL -1using namespace std; // A class that represents an directed graphclass Graph{    int V;    // No. of vertices    list<int> *adj;    // A dynamic array of adjacency lists     // A Recursive DFS based function used by SCC()    void SCCUtil(int u, int disc[], int low[],                 stack<int> *st, bool stackMember[]);public:    Graph(int V);   // Constructor    void addEdge(int v, int w);   // function to add an edge to graph    void SCC();    // prints strongly connected components}; Graph::Graph(int V){    this->V = V;    adj = new list<int>[V];} void Graph::addEdge(int v, int w){    adj[v].push_back(w);} // A recursive function that finds and prints strongly connected// components using DFS traversal// u --> The vertex to be visited next// disc[] --> Stores discovery times of visited vertices// low[] -- >> earliest visited vertex (the vertex with minimum//             discovery time) that can be reached from subtree//             rooted with current vertex// *st -- >> To store all the connected ancestors (could be part//           of SCC)// stackMember[] --> bit/index array for faster check whether//                  a node is in stackvoid Graph::SCCUtil(int u, int disc[], int low[], stack<int> *st,                    bool stackMember[]){    // A static variable is used for simplicity, we can avoid use    // of static variable by passing a pointer.    static int time = 0;     // Initialize discovery time and low value    disc[u] = low[u] = ++time;    st->push(u);    stackMember[u] = true;     // Go through all vertices adjacent to this    list<int>::iterator i;    for (i = adj[u].begin(); i != adj[u].end(); ++i)    {        int v = *i;  // v is current adjacent of 'u'         // If v is not visited yet, then recur for it        if (disc[v] == -1)        {            SCCUtil(v, disc, low, st, stackMember);             // Check if the subtree rooted with 'v' has a            // connection to one of the ancestors of 'u'            // Case 1 (per above discussion on Disc and Low value)            low[u]  = min(low[u], low[v]);        }         // Update low value of 'u' only of 'v' is still in stack        // (i.e. it's a back edge, not cross edge).        // Case 2 (per above discussion on Disc and Low value)        else if (stackMember[v] == true)            low[u]  = min(low[u], disc[v]);    }     // head node found, pop the stack and print an SCC    int w = 0;  // To store stack extracted vertices    if (low[u] == disc[u])    {        while (st->top() != u)        {            w = (int) st->top();            cout << w << " ";            stackMember[w] = false;            st->pop();        }        w = (int) st->top();        cout << w << "/n";        stackMember[w] = false;        st->pop();    }} // The function to do DFS traversal. It uses SCCUtil()void Graph::SCC(){    int *disc = new int[V];    int *low = new int[V];    bool *stackMember = new bool[V];    stack<int> *st = new stack<int>();     // Initialize disc and low, and stackMember arrays    for (int i = 0; i < V; i++)    {        disc[i] = NIL;        low[i] = NIL;        stackMember[i] = false;    }     // Call the recursive helper function to find strongly    // connected components in DFS tree with vertex 'i'    for (int i = 0; i < V; i++)        if (disc[i] == NIL)            SCCUtil(i, disc, low, st, stackMember);} // Driver program to test above functionint main(){    cout << "/nSCCs in first graph /n";    Graph g1(5);    g1.addEdge(1, 0);    g1.addEdge(0, 2);    g1.addEdge(2, 1);    g1.addEdge(0, 3);    g1.addEdge(3, 4);    g1.SCC();     cout << "/nSCCs in second graph /n";    Graph g2(4);    g2.addEdge(0, 1);    g2.addEdge(1, 2);    g2.addEdge(2, 3);    g2.SCC();     cout << "/nSCCs in third graph /n";    Graph g3(7);    g3.addEdge(0, 1);    g3.addEdge(1, 2);    g3.addEdge(2, 0);    g3.addEdge(1, 3);    g3.addEdge(1, 4);    g3.addEdge(1, 6);    g3.addEdge(3, 5);    g3.addEdge(4, 5);    g3.SCC();     cout << "/nSCCs in fourth graph /n";    Graph g4(11);    g4.addEdge(0,1);g4.addEdge(0,3);    g4.addEdge(1,2);g4.addEdge(1,4);    g4.addEdge(2,0);g4.addEdge(2,6);    g4.addEdge(3,2);    g4.addEdge(4,5);g4.addEdge(4,6);    g4.addEdge(5,6);g4.addEdge(5,7);g4.addEdge(5,8);g4.addEdge(5,9);    g4.addEdge(6,4);    g4.addEdge(7,9);    g4.addEdge(8,9);    g4.addEdge(9,8);    g4.SCC();     cout << "/nSCCs in fifth graph /n";    Graph g5(5);    g5.addEdge(0,1);    g5.addEdge(1,2);    g5.addEdge(2,3);    g5.addEdge(2,4);    g5.addEdge(3,0);    g5.addEdge(4,2);    g5.SCC();     return 0;}程序運行輸出:

SCCs in first graph431 2 0SCCs in second graph3210SCCs in third graph53462 1 0SCCs in fourth graph8 975 4 63 2 1 010SCCs in fifth graph4 3 2 1 0 Python程序:

# Python program to find strongly connected components in a given# directed graph using Tarjan's algorithm (single DFS)#Complexity : O(V+E)  from collections import defaultdict  #This class represents an directed graph # using adjacency list representationclass Graph:      def __init__(self,vertices):        #No. of vertices        self.V= vertices                  # default dictionary to store graph        self.graph = defaultdict(list)                  self.Time = 0      # function to add an edge to graph    def addEdge(self,u,v):        self.graph[u].append(v)               '''A recursive function that find finds and prints strongly connected    components using DFS traversal    u --> The vertex to be visited next    disc[] --> Stores discovery times of visited vertices    low[] -- >> earliest visited vertex (the vertex with minimum                discovery time) that can be reached from subtree                rooted with current vertex    st -- >> To store all the connected ancestors (could be part           of SCC)    stackMember[] --> bit/index array for faster check whether                  a node is in stack    '''    def SCCUtil(self,u, low, disc, stackMember, st):         # Initialize discovery time and low value        disc[u] = self.Time        low[u] = self.Time        self.Time += 1        stackMember[u] = True        st.append(u)         # Go through all vertices adjacent to this        for v in self.graph[u]:                         # If v is not visited yet, then recur for it            if disc[v] == -1 :                             self.SCCUtil(v, low, disc, stackMember, st)                 # Check if the subtree rooted with v has a connection to                # one of the ancestors of u                # Case 1 (per above discussion on Disc and Low value)                low[u] = min(low[u], low[v])                                     elif stackMember[v] == True:                  '''Update low value of 'u' only if 'v' is still in stack                (i.e. it's a back edge, not cross edge).                Case 2 (per above discussion on Disc and Low value) '''                low[u] = min(low[u], disc[v])         # head node found, pop the stack and print an SCC        w = -1 #To store stack extracted vertices        if low[u] == disc[u]:            while w != u:                w = st.pop()                print w,                stackMember[w] = False                             print""                       #The function to do DFS traversal.     # It uses recursive SCCUtil()    def SCC(self):          # Mark all the vertices as not visited         # and Initialize parent and visited,         # and ap(articulation point) arrays        disc = [-1] * (self.V)        low = [-1] * (self.V)        stackMember = [False] * (self.V)        st =[]                  # Call the recursive helper function         # to find articulation points        # in DFS tree rooted with vertex 'i'        for i in range(self.V):            if disc[i] == -1:                self.SCCUtil(i, low, disc, stackMember, st)        # Create a graph given in the above diagramg1 = Graph(5)g1.addEdge(1, 0)g1.addEdge(0, 2)g1.addEdge(2, 1)g1.addEdge(0, 3)g1.addEdge(3, 4)print "SSC in first graph "g1.SCC() g2 = Graph(4)g2.addEdge(0, 1)g2.addEdge(1, 2)g2.addEdge(2, 3)print "/nSSC in second graph "g2.SCC()   g3 = Graph(7)g3.addEdge(0, 1)g3.addEdge(1, 2)g3.addEdge(2, 0)g3.addEdge(1, 3)g3.addEdge(1, 4)g3.addEdge(1, 6)g3.addEdge(3, 5)g3.addEdge(4, 5)print "/nSSC in third graph "g3.SCC() g4 = Graph(11)g4.addEdge(0, 1)g4.addEdge(0, 3)g4.addEdge(1, 2)g4.addEdge(1, 4)g4.addEdge(2, 0)g4.addEdge(2, 6)g4.addEdge(3, 2)g4.addEdge(4, 5)g4.addEdge(4, 6)g4.addEdge(5, 6)g4.addEdge(5, 7)g4.addEdge(5, 8)g4.addEdge(5, 9)g4.addEdge(6, 4)g4.addEdge(7, 9)g4.addEdge(8, 9)g4.addEdge(9, 8)print "/nSSC in fourth graph "g4.SCC();  g5 = Graph (5)g5.addEdge(0, 1)g5.addEdge(1, 2)g5.addEdge(2, 3)g5.addEdge(2, 4)g5.addEdge(3, 0)g5.addEdge(4, 2)print "/nSSC in fifth graph "g5.SCC(); #This code is contributed by Neelam Yadav

 


發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
亚洲香蕉成人av网站在线观看_欧美精品成人91久久久久久久_久久久久久久久久久亚洲_热久久视久久精品18亚洲精品_国产精自产拍久久久久久_亚洲色图国产精品_91精品国产网站_中文字幕欧美日韩精品_国产精品久久久久久亚洲调教_国产精品久久一区_性夜试看影院91社区_97在线观看视频国产_68精品久久久久久欧美_欧美精品在线观看_国产精品一区二区久久精品_欧美老女人bb
国产成人福利网站| 国产香蕉97碰碰久久人人| 最近2019好看的中文字幕免费| 日韩国产高清污视频在线观看| 午夜精品在线观看| 97久久精品在线| 欧美成人性生活| 日韩久久精品成人| 欧美亚洲另类激情另类| 成人黄色激情网| 成人高清视频观看www| 色婷婷亚洲mv天堂mv在影片| 亚洲区免费影片| 国产精品免费一区二区三区都可以| 亚洲有声小说3d| 97精品免费视频| 国产精品国产福利国产秒拍| 8x海外华人永久免费日韩内陆视频| 91国产精品91| 97成人精品视频在线观看| 国产亚洲一区精品| 欧美日在线观看| 欧美精品18videosex性欧美| 一个人看的www欧美| 在线观看国产精品91| 国产精品igao视频| 欧美裸体男粗大视频在线观看| 国模精品一区二区三区色天香| 国产精品福利无圣光在线一区| 一本色道久久88精品综合| 成人国产亚洲精品a区天堂华泰| 中文字幕日本欧美| 岛国av午夜精品| 亚洲自拍欧美色图| 欧美精品成人91久久久久久久| 久久久久久久久久久亚洲| 日韩欧美精品网址| 久久欧美在线电影| 亚洲a级在线观看| 国产97在线视频| 久久久久久久香蕉网| 亚洲精品有码在线| 精品久久久久久久久久久久久久| 精品成人乱色一区二区| 国产日韩欧美在线观看| 日韩精品极品在线观看播放免费视频| 精品国产31久久久久久| 亚洲精品美女在线| 欧美大成色www永久网站婷| 国产精品av在线播放| 欧美裸体xxxx极品少妇| 欧美夫妻性生活视频| 欧洲日本亚洲国产区| 日韩欧美亚洲一二三区| 亚洲欧美日韩网| 亚洲国产三级网| 亚洲欧美成人网| 欧美精品在线网站| 亚洲精选一区二区| 国产精品电影观看| 国产精品网红直播| 亚洲xxxx做受欧美| 久久久久久久久91| 中文字幕亚洲欧美日韩在线不卡| 国产免费一区二区三区香蕉精| 久久香蕉频线观| 久久精品亚洲热| 91在线色戒在线| 欧美黑人xxxⅹ高潮交| xvideos成人免费中文版| 亚洲奶大毛多的老太婆| 美女精品视频一区| 精品国产乱码久久久久久虫虫漫画| 欧美性猛交xxxx乱大交| 亚洲国产精品系列| 欧美最近摘花xxxx摘花| 精品国偷自产在线| 性视频1819p久久| 欧美性xxxxxxx| 91社区国产高清| 亚州欧美日韩中文视频| 亚洲国产小视频在线观看| 成人国产精品色哟哟| 韩国欧美亚洲国产| 91精品视频免费看| 日韩av在线免费观看| 91精品国产综合久久久久久蜜臀| 最近2019中文字幕在线高清| 俺去啦;欧美日韩| 亚洲天堂免费视频| 亚洲国产精品99久久| 欧美日韩ab片| 欧美精品第一页在线播放| 日韩电影免费在线观看| 欧美成人手机在线| 欧美多人爱爱视频网站| 91九色视频导航| 少妇高潮 亚洲精品| 91色p视频在线| 亚洲成色777777在线观看影院| 亚洲成人久久电影| 欧美成人亚洲成人| 精品国产精品三级精品av网址| 欧美性jizz18性欧美| 国产亚洲视频在线| 国产成人a亚洲精品| 国产va免费精品高清在线| 国产一区二区日韩| 欧美性xxxx在线播放| 日韩成人激情在线| 奇米4444一区二区三区| 久久精品成人欧美大片古装| 欧美精品电影在线| 91av成人在线| 国产精品第1页| 一本色道久久综合狠狠躁篇的优点| 欧美成人性色生活仑片| 成人综合网网址| 久久中文久久字幕| 久久99久久99精品中文字幕| 欧美在线视频免费播放| 欧美日韩在线观看视频| 97久久超碰福利国产精品…| 亚洲jizzjizz日本少妇| 成人美女av在线直播| 免费91麻豆精品国产自产在线观看| 日韩精品在线免费观看| 国产69精品久久久| 久久亚洲私人国产精品va| 久久久亚洲福利精品午夜| 91在线观看免费网站| 欧美日韩国产一区在线| 欧美高清视频在线观看| 国产精品美女无圣光视频| 欧美性xxxxxxx| 国产丝袜精品视频| 欧美色另类天堂2015| 亚洲一区二区中文| 中文字幕欧美专区| 日韩美女视频免费看| 久久夜精品香蕉| 久久国产精品久久久| 欧美性视频在线| 亚洲视频777| 亚洲午夜国产成人av电影男同| 欧美成人午夜激情在线| 一区二区三区亚洲| 亚洲国产精品久久久久| 欧美日韩高清在线观看| 国产视频精品久久久| 久久福利网址导航| 精品一区精品二区| 色妞一区二区三区| 久久久国产精品x99av| 国产日韩精品在线观看| 欧美一区三区三区高中清蜜桃| 欧美又大又粗又长| 国产日韩欧美黄色| 亚洲欧洲第一视频| 日韩av手机在线| 亚洲一区999| 国产一区二区三区视频在线观看| 国产精品午夜视频| 国产精品免费电影|