亚洲香蕉成人av网站在线观看_欧美精品成人91久久久久久久_久久久久久久久久久亚洲_热久久视久久精品18亚洲精品_国产精自产拍久久久久久_亚洲色图国产精品_91精品国产网站_中文字幕欧美日韩精品_国产精品久久久久久亚洲调教_国产精品久久一区_性夜试看影院91社区_97在线观看视频国产_68精品久久久久久欧美_欧美精品在线观看_国产精品一区二区久久精品_欧美老女人bb

首頁 > 學院 > 開發設計 > 正文

修正ptb_word_lm.py示例中的問題

2019-11-14 09:08:52
字體:
來源:轉載
供稿:網友

Win7 + python3 + tf 1.0.0 alpha下執行ptb_Word_lm.py運行時出現以下問題:

1、無法找到rnn_cell;

2、無法找到seq2seq;

3、其他。

修正方法為:

from tensorflow.contrib import rnn

rnn.BasicLSTMCell

rnn.DropoutWrapper

rnn.MultiRNNCell

tf.contrib.legacy_seq2seq.sequence_loss_by_example

另,reader代碼中出現錯誤:

TypeError: a bytes-like object is required, not 'str'

修正方法:

line30 修改為f.read().decode("utf-8").replace("/n", "<eos>").split()

貼ptb_word_lm修正后源碼如下:

# -*- coding: utf-8 -*-# Copyright 2015 The TensorFlow Authors. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##     http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either exPRess or implied.# See the License for the specific language governing permissions and# limitations under the License.# =============================================================================="""Example / benchmark for building a PTB LSTM model.Trains the model described in:(Zaremba, et. al.) Recurrent Neural Network Regularizationhttp://arxiv.org/abs/1409.2329There are 3 supported model configurations:===========================================| config | epochs | train | valid  | test===========================================| small  | 13     | 37.99 | 121.39 | 115.91| medium | 39     | 48.45 |  86.16 |  82.07| large  | 55     | 37.87 |  82.62 |  78.29The exact results may vary depending on the random initialization.The hyperparameters used in the model:- init_scale - the initial scale of the weights- learning_rate - the initial value of the learning rate- max_grad_norm - the maximum permissible norm of the gradient- num_layers - the number of LSTM layers- num_steps - the number of unrolled steps of LSTM- hidden_size - the number of LSTM units- max_epoch - the number of epochs trained with the initial learning rate- max_max_epoch - the total number of epochs for training- keep_prob - the probability of keeping weights in the dropout layer- lr_decay - the decay of the learning rate for each epoch after "max_epoch"- batch_size - the batch sizeThe data required for this example is in the data/ dir of thePTB dataset from Tomas Mikolov's webpage:$ wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz$ tar xvf simple-examples.tgzTo run:$ python ptb_word_lm.py --data_path=simple-examples/data/"""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport timeimport numpy as npimport tensorflow as tffrom tensorflow.contrib import rnnimport readerflags = tf.flagslogging = tf.loggingflags.DEFINE_string("model", "small", "A type of model. Possible options are: small, medium, large.")flags.DEFINE_string("data_path", "YOUR PATH TO LSTM DATA DIR", "Where the training/test data is stored.")flags.DEFINE_string("save_path", None, "Model output directory.")flags.DEFINE_bool("use_fp16", False, "Train using 16-bit floats instead of 32bit floats")FLAGS = flags.FLAGSdef data_type():    return tf.float16 if FLAGS.use_fp16 else tf.float32class PTBInput(object):    """The input data."""    def __init__(self, config, data, name=None):        self.batch_size = batch_size = config.batch_size        self.num_steps = num_steps = config.num_steps        self.epoch_size = ((len(data) // batch_size) - 1) // num_steps        self.input_data, self.targets = reader.ptb_producer(data, batch_size, num_steps, name=name)class PTBModel(object):    """The PTB model."""    def __init__(self, is_training, config, input_):        self._input = input_        batch_size = input_.batch_size        num_steps = input_.num_steps        size = config.hidden_size        vocab_size = config.vocab_size        # Slightly better results can be obtained with forget gate biases        # initialized to 1 but the hyperparameters of the model would need to be        # different than reported in the paper.        lstm_cell = rnn.BasicLSTMCell(size, forget_bias=0.0, state_is_tuple=True)        if is_training and config.keep_prob < 1:            lstm_cell = rnn.DropoutWrapper(lstm_cell, output_keep_prob=config.keep_prob)        cell = rnn.MultiRNNCell([lstm_cell] * config.num_layers, state_is_tuple=True)        self._initial_state = cell.zero_state(batch_size, data_type())        with tf.device("/cpu:0"):            embedding = tf.get_variable("embedding", [vocab_size, size], dtype=data_type())            inputs = tf.nn.embedding_lookup(embedding, input_.input_data)        if is_training and config.keep_prob < 1:            inputs = tf.nn.dropout(inputs, config.keep_prob)        # Simplified version of models/tutorials/rnn/rnn.py's rnn().        # This builds an unrolled LSTM for tutorial purposes only.        # In general, use the rnn() or state_saving_rnn() from rnn.py.        #        # The alternative version of the code below is:        #        # inputs = tf.unstack(inputs, num=num_steps, axis=1)        # outputs, state = tf.nn.rnn(cell, inputs,        #                            initial_state=self._initial_state)        outputs = []        state = self._initial_state        with tf.variable_scope("RNN"):            for time_step in range(num_steps):                if time_step > 0:                    tf.get_variable_scope().reuse_variables()                (cell_output, state) = cell(inputs[:, time_step, :], state)                outputs.append(cell_output)        output = tf.reshape(tf.concat_v2(outputs, 1), [-1, size])        softmax_w = tf.get_variable("softmax_w", [size, vocab_size], dtype=data_type())        softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type())        logits = tf.matmul(output, softmax_w) + softmax_b        loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(            [logits],            [tf.reshape(input_.targets, [-1])],            [tf.ones([batch_size * num_steps], dtype=data_type())])        self._cost = cost = tf.reduce_sum(loss) / batch_size        self._final_state = state        if not is_training:            return        self._lr = tf.Variable(0.0, trainable=False)        tvars = tf.trainable_variables()        grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),                                          config.max_grad_norm)        optimizer = tf.train.GradientDescentOptimizer(self._lr)        self._train_op = optimizer.apply_gradients(            zip(grads, tvars),            global_step=tf.contrib.framework.get_or_create_global_step())        self._new_lr = tf.placeholder(tf.float32, shape=[], name="new_learning_rate")        self._lr_update = tf.assign(self._lr, self._new_lr)    def assign_lr(self, session, lr_value):        session.run(self._lr_update, feed_dict={self._new_lr: lr_value})    @property    def input(self):        return self._input    @property    def initial_state(self):        return self._initial_state    @property    def cost(self):        return self._cost    @property    def final_state(self):        return self._final_state    @property    def lr(self):        return self._lr    @property    def train_op(self):        return self._train_opclass SmallConfig(object):    """Small config."""    init_scale = 0.1    learning_rate = 1.0    max_grad_norm = 5    num_layers = 2    num_steps = 20    hidden_size = 200    max_epoch = 4    max_max_epoch = 13    keep_prob = 1.0    lr_decay = 0.5    batch_size = 20    vocab_size = 10000class MediumConfig(object):    """Medium config."""    init_scale = 0.05    learning_rate = 1.0    max_grad_norm = 5    num_layers = 2    num_steps = 35    hidden_size = 650    max_epoch = 6    max_max_epoch = 39    keep_prob = 0.5    lr_decay = 0.8    batch_size = 20    vocab_size = 10000class LargeConfig(object):    """Large config."""    init_scale = 0.04    learning_rate = 1.0    max_grad_norm = 10    num_layers = 2    num_steps = 35    hidden_size = 1500    max_epoch = 14    max_max_epoch = 55    keep_prob = 0.35    lr_decay = 1 / 1.15    batch_size = 20    vocab_size = 10000class RTestConfig(object):    """Tiny config, for testing."""    init_scale = 0.1    learning_rate = 1.0    max_grad_norm = 1    num_layers = 1    num_steps = 2    hidden_size = 2    max_epoch = 1    max_max_epoch = 1    keep_prob = 1.0    lr_decay = 0.5    batch_size = 20    vocab_size = 10000def run_epoch(session, model, eval_op=None, verbose=False):    """Runs the model on the given data."""    start_time = time.time()    costs = 0.0    iters = 0    state = session.run(model.initial_state)    fetches = {        "cost": model.cost,        "final_state": model.final_state,    }    if eval_op is not None:        fetches["eval_op"] = eval_op    for step in range(model.input.epoch_size):        feed_dict = {}        for i, (c, h) in enumerate(model.initial_state):            feed_dict[c] = state[i].c            feed_dict[h] = state[i].h        vals = session.run(fetches, feed_dict)        cost = vals["cost"]        state = vals["final_state"]        costs += cost        iters += model.input.num_steps        if verbose and step % (model.input.epoch_size // 10) == 10:            print("%.3f perplexity: %.3f speed: %.0f wps" %                  (step * 1.0 / model.input.epoch_size, np.exp(costs / iters),                   iters * model.input.batch_size / (time.time() - start_time)))    return np.exp(costs / iters)def get_config():    if FLAGS.model == "small":        return SmallConfig()    elif FLAGS.model == "medium":        return MediumConfig()    elif FLAGS.model == "large":        return LargeConfig()    elif FLAGS.model == "test":        return RTestConfig()    else:        raise ValueError("Invalid model: %s", FLAGS.model)def main(_):    if not FLAGS.data_path:        raise ValueError("Must set --data_path to PTB data directory")    raw_data = reader.ptb_raw_data(FLAGS.data_path)    train_data, valid_data, test_data, _ = raw_data    config = get_config()    eval_config = get_config()    eval_config.batch_size = 1    eval_config.num_steps = 1    with tf.Graph().as_default():        initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale)        with tf.name_scope("Train"):            train_input = PTBInput(config=config, data=train_data, name="TrainInput")            with tf.variable_scope("Model", reuse=None, initializer=initializer):                m = PTBModel(is_training=True, config=config, input_=train_input)            tf.summary.scalar("Training Loss", m.cost)            tf.summary.scalar("Learning Rate", m.lr)        with tf.name_scope("Valid"):            valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")            with tf.variable_scope("Model", reuse=True, initializer=initializer):                mvalid = PTBModel(is_training=False, config=config, input_=valid_input)            tf.summary.scalar("Validation Loss", mvalid.cost)        with tf.name_scope("Test"):            test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")            with tf.variable_scope("Model", reuse=True, initializer=initializer):                mtest = PTBModel(is_training=False, config=eval_config, input_=test_input)        sv = tf.train.Supervisor(logdir=FLAGS.save_path)        with sv.managed_session() as session:            for i in range(config.max_max_epoch):                lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)                m.assign_lr(session, config.learning_rate * lr_decay)                print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))                train_perplexity = run_epoch(session, m, eval_op=m.train_op,                                             verbose=True)                print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))                valid_perplexity = run_epoch(session, mvalid)                print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))            test_perplexity = run_epoch(session, mtest)            print("Test Perplexity: %.3f" % test_perplexity)            if FLAGS.save_path:                print("Saving model to %s." % FLAGS.save_path)                sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step)if __name__ == "__main__":    tf.app.run()


發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
亚洲香蕉成人av网站在线观看_欧美精品成人91久久久久久久_久久久久久久久久久亚洲_热久久视久久精品18亚洲精品_国产精自产拍久久久久久_亚洲色图国产精品_91精品国产网站_中文字幕欧美日韩精品_国产精品久久久久久亚洲调教_国产精品久久一区_性夜试看影院91社区_97在线观看视频国产_68精品久久久久久欧美_欧美精品在线观看_国产精品一区二区久久精品_欧美老女人bb
国产精品国产三级国产aⅴ浪潮| 欧美中文在线观看国产| 国产69精品久久久久久| 成人疯狂猛交xxx| 欧美日韩午夜激情| 欧美精品久久久久久久久| 日韩免费在线免费观看| 欧美性极品xxxx娇小| 亚洲综合视频1区| 一区二区三区在线播放欧美| 亚洲自拍偷拍在线| 欧美床上激情在线观看| 亚洲国内精品在线| 欧美午夜www高清视频| 久久久久久久久久av| 色www亚洲国产张柏芝| 91色视频在线观看| 欧美在线xxx| 日韩av中文字幕在线| 91久久中文字幕| 国内精品国产三级国产在线专| 欧美高清理论片| 亚洲美女视频网| 成人在线小视频| 国产精品久久久精品| 久久精品电影网站| 亚洲嫩模很污视频| 日韩在线播放av| 精品女厕一区二区三区| 成人国产在线激情| 久久久成人精品视频| 欧美性猛交xxxxx水多| 一本色道久久88综合亚洲精品ⅰ| 欧美日韩国产在线| 91丝袜美腿美女视频网站| 日韩欧美在线视频免费观看| 亚洲国产成人精品女人久久久| 日韩视频免费大全中文字幕| 欧美高清在线观看| 久99九色视频在线观看| 日韩黄色在线免费观看| 国产美女主播一区| 久久综合久久八八| 中文字幕国产亚洲| 成人性生交大片免费看视频直播| 91久久久久久久久久久久久| 国产一区二区丝袜| 久久亚洲欧美日韩精品专区| 日本精品免费一区二区三区| 国产精品久久中文| 91视频88av| 亚洲性日韩精品一区二区| 亚洲一区二区久久久久久| 国内外成人免费激情在线视频| 91系列在线播放| 国内精品久久久| 国产精品自产拍在线观看| 欧美黄色三级网站| 91久久精品国产91久久| 亚洲美女在线观看| 欧美国产日韩二区| 久久精品一偷一偷国产| 黄网站色欧美视频| 91精品国产高清| 97香蕉久久夜色精品国产| 亚洲精品美女在线观看播放| 日韩中文字幕久久| 中文字幕欧美亚洲| 亚洲字幕一区二区| 日韩精品久久久久久福利| 成人激情视频免费在线| 欧美性感美女h网站在线观看免费| 亚洲аv电影天堂网| 夜夜嗨av一区二区三区四区| 久久成人18免费网站| 国产专区欧美专区| 亚洲影视中文字幕| 国产香蕉97碰碰久久人人| 亚洲国产又黄又爽女人高潮的| 91精品国产综合久久香蕉922| 久久高清视频免费| 亚洲一区二区三区视频| 国产a∨精品一区二区三区不卡| 另类天堂视频在线观看| 亚洲大胆美女视频| 欧美日韩国产丝袜另类| 亚洲成人黄色在线| 国产精品十八以下禁看| 亚洲2020天天堂在线观看| 久久久久久久久久久亚洲| 在线观看久久久久久| 亚洲视频在线观看| 亚洲国产第一页| 亚洲精品综合精品自拍| 国产99久久精品一区二区永久免费| 国产精品高清网站| 亚洲xxxxx| 国产精品久久久久久久久久久不卡| 国产精品揄拍一区二区| 国产欧亚日韩视频| 久久久久国产视频| 国产精品久久久久久久久借妻| 日韩亚洲在线观看| 亚洲无限乱码一二三四麻| 亚洲精品国产精品国自产在线| 日韩美女在线观看一区| 成人妇女淫片aaaa视频| 国产精品电影在线观看| 国产精品免费久久久| 中文字幕久精品免费视频| 欧美激情在线狂野欧美精品| 亚洲已满18点击进入在线看片| 欧美极品少妇xxxxⅹ免费视频| 91精品国产综合久久香蕉922| 国产亚洲免费的视频看| 色在人av网站天堂精品| 亚洲国产又黄又爽女人高潮的| 欧美福利小视频| 深夜成人在线观看| 欧美激情精品久久久久久变态| 日韩精品在线影院| 国内精品视频一区| 欧美怡红院视频一区二区三区| 亚洲精品免费一区二区三区| 欧美精品www| 97热精品视频官网| 美女啪啪无遮挡免费久久网站| 午夜免费久久久久| 日韩精品高清在线| 在线色欧美三级视频| 亚洲国模精品私拍| 久久视频在线免费观看| 国产精品久久久久免费a∨| 国产亚洲欧美aaaa| 亚洲自拍高清视频网站| 91高清视频在线免费观看| 亚洲爱爱爱爱爱| 亚洲娇小xxxx欧美娇小| www.亚洲天堂| 国产精品久久久久久亚洲调教| 国产精品久久久久久亚洲影视| 亚洲欧美激情精品一区二区| 日韩精品视频观看| 欧美精品生活片| www高清在线视频日韩欧美| 日韩av大片在线| 日本免费一区二区三区视频观看| 久久伊人免费视频| 亚洲视频在线免费观看| 91精品视频在线播放| 欧美重口另类videos人妖| 久久久久日韩精品久久久男男| 国产日韩精品在线| 成人av电影天堂| 91系列在线观看| 欧美激情按摩在线| 欧美日韩国内自拍| 精品国偷自产在线视频99| 久久国产天堂福利天堂| 亚洲色图激情小说| 亚洲精品国产福利| 91色视频在线观看| 国产一区玩具在线观看| 国产亚洲精品高潮|