亚洲香蕉成人av网站在线观看_欧美精品成人91久久久久久久_久久久久久久久久久亚洲_热久久视久久精品18亚洲精品_国产精自产拍久久久久久_亚洲色图国产精品_91精品国产网站_中文字幕欧美日韩精品_国产精品久久久久久亚洲调教_国产精品久久一区_性夜试看影院91社区_97在线观看视频国产_68精品久久久久久欧美_欧美精品在线观看_国产精品一区二区久久精品_欧美老女人bb

首頁 > 網站 > 幫助中心 > 正文

關于ResNeXt網絡的pytorch實現

2024-07-09 22:43:06
字體:
來源:轉載
供稿:網友

此處需要pip install pretrainedmodels

"""Finetuning Torchvision Models"""from __future__ import print_function from __future__ import divisionimport torchimport torch.nn as nnimport torch.optim as optimimport numpy as npimport torchvisionfrom torchvision import datasets, models, transformsimport matplotlib.pyplot as pltimport timeimport osimport copyimport argparseimport pretrainedmodels.models.resnext as resnextprint("PyTorch Version: ",torch.__version__)print("Torchvision Version: ",torchvision.__version__)# Top level data directory. Here we assume the format of the directory conforms #  to the ImageFolder structure#data_dir = "./data/hymenoptera_data"data_dir = "/media/dell/dell/data/13/"# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]model_name = "resnext"# Number of classes in the datasetnum_classes = 171# Batch size for training (change depending on how much memory you have)batch_size = 16# Number of epochs to train for num_epochs = 1000# Flag for feature extracting. When False, we finetune the whole model, #  when True we only update the reshaped layer paramsfeature_extract = False# 參數設置,使得我們能夠手動輸入命令行參數,就是讓風格變得和Linux命令行差不多parser = argparse.ArgumentParser(description='PyTorch seresnet')parser.add_argument('--outf', default='/home/dell/Desktop/zhou/train7', help='folder to output images and model checkpoints') #輸出結果保存路徑parser.add_argument('--net', default='/home/dell/Desktop/zhou/train7/resnext.pth', help="path to net (to continue training)") #恢復訓練時的模型路徑args = parser.parse_args()def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):#def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,scheduler, is_inception=False):  since = time.time()  val_acc_history = []    best_model_wts = copy.deepcopy(model.state_dict())  best_acc = 0.0  print("Start Training, resnext!") # 定義遍歷數據集的次數  with open("/home/dell/Desktop/zhou/train7/acc.txt", "w") as f1:    with open("/home/dell/Desktop/zhou/train7/log.txt", "w")as f2:      for epoch in range(num_epochs):        print('Epoch {}/{}'.format(epoch+1, num_epochs))        print('*' * 10)        # Each epoch has a training and validation phase        for phase in ['train', 'val']:          if phase == 'train':            #scheduler.step()            model.train() # Set model to training mode          else:            model.eval()  # Set model to evaluate mode              running_loss = 0.0          running_corrects = 0              # Iterate over data.          for inputs, labels in dataloaders[phase]:            inputs = inputs.to(device)            labels = labels.to(device)                # zero the parameter gradients            optimizer.zero_grad()                # forward            # track history if only in train            with torch.set_grad_enabled(phase == 'train'):              # Get model outputs and calculate loss              # Special case for inception because in training it has an auxiliary output. In train              #  mode we calculate the loss by summing the final output and the auxiliary output              #  but in testing we only consider the final output.              if is_inception and phase == 'train':                # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958                outputs, aux_outputs = model(inputs)                loss1 = criterion(outputs, labels)                loss2 = criterion(aux_outputs, labels)                loss = loss1 + 0.4*loss2              else:                outputs = model(inputs)                loss = criterion(outputs, labels)                  _, preds = torch.max(outputs, 1)                  # backward + optimize only if in training phase              if phase == 'train':                loss.backward()                optimizer.step()                # statistics            running_loss += loss.item() * inputs.size(0)            running_corrects += torch.sum(preds == labels.data)          epoch_loss = running_loss / len(dataloaders[phase].dataset)          epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)              print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))          f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))          f2.write('/n')          f2.flush()                     # deep copy the model          if phase == 'val':            if (epoch+1)%5==0:              #print('Saving model......')              torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1))            f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, 100*epoch_acc))            f1.write('/n')            f1.flush()          if phase == 'val' and epoch_acc > best_acc:            f3 = open("/home/dell/Desktop/zhou/train7/best_acc.txt", "w")            f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,100*epoch_acc))            f3.close()            best_acc = epoch_acc            best_model_wts = copy.deepcopy(model.state_dict())          if phase == 'val':            val_acc_history.append(epoch_acc)  time_elapsed = time.time() - since  print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))  print('Best val Acc: {:4f}'.format(best_acc))  # load best model weights  model.load_state_dict(best_model_wts)  return model, val_acc_historydef set_parameter_requires_grad(model, feature_extracting):  if feature_extracting:    for param in model.parameters():      param.requires_grad = Falsedef initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):  # Initialize these variables which will be set in this if statement. Each of these  #  variables is model specific.  model_ft = None  input_size = 0  if model_name == "resnet":    """ Resnet18    """    model_ft = models.resnet18(pretrained=use_pretrained)    set_parameter_requires_grad(model_ft, feature_extract)    num_ftrs = model_ft.fc.in_features    model_ft.fc = nn.Linear(num_ftrs, num_classes)    input_size = 224  elif model_name == "alexnet":    """ Alexnet    """    model_ft = models.alexnet(pretrained=use_pretrained)    set_parameter_requires_grad(model_ft, feature_extract)    num_ftrs = model_ft.classifier[6].in_features    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)    input_size = 224  elif model_name == "vgg":    """ VGG11_bn    """    model_ft = models.vgg11_bn(pretrained=use_pretrained)    set_parameter_requires_grad(model_ft, feature_extract)    num_ftrs = model_ft.classifier[6].in_features    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)    input_size = 224  elif model_name == "squeezenet":    """ Squeezenet    """    model_ft = models.squeezenet1_0(pretrained=use_pretrained)    set_parameter_requires_grad(model_ft, feature_extract)    model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))    model_ft.num_classes = num_classes    input_size = 224  elif model_name == "densenet":    """ Densenet    """    model_ft = models.densenet121(pretrained=use_pretrained)    set_parameter_requires_grad(model_ft, feature_extract)    num_ftrs = model_ft.classifier.in_features    model_ft.classifier = nn.Linear(num_ftrs, num_classes)     input_size = 224  elif model_name == "resnext":    """ resnext    Be careful, expects (3,224,224) sized images     """    model_ft = resnext.resnext101_64x4d(num_classes=1000, pretrained='imagenet')    set_parameter_requires_grad(model_ft, feature_extract)    model_ft.last_linear = nn.Linear(2048, num_classes)       #pre='/home/dell/Desktop/zhou/train6/inception_009.pth'    #model_ft.load_state_dict(torch.load(pre))    input_size = 224  else:    print("Invalid model name, exiting...")    exit()    return model_ft, input_size# Initialize the model for this runmodel_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)# Print the model we just instantiated#print(model_ft) data_transforms = {  'train': transforms.Compose([    transforms.RandomResizedCrop(input_size),    transforms.RandomHorizontalFlip(),    transforms.ToTensor(),    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  ]),  'val': transforms.Compose([    transforms.Resize(input_size),    transforms.CenterCrop(input_size),    transforms.ToTensor(),    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  ]),}print("Initializing Datasets and Dataloaders...")# Create training and validation datasetsimage_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}# Create training and validation dataloadersdataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}# Detect if we have a GPU availabledevice = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")#we='/home/dell/Desktop/dj/inception_050.pth'#model_ft.load_state_dict(torch.load(we))#diaoyong# Send the model to GPUmodel_ft = model_ft.to(device)params_to_update = model_ft.parameters()print("Params to learn:")if feature_extract:  params_to_update = []  for name,param in model_ft.named_parameters():    if param.requires_grad == True:      params_to_update.append(param)      print("/t",name)else:  for name,param in model_ft.named_parameters():    if param.requires_grad == True:      print("/t",name)# Observe that all parameters are being optimizedoptimizer_ft = optim.SGD(params_to_update, lr=0.01, momentum=0.9)# Decay LR by a factor of 0.1 every 7 epochs#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)# Setup the loss fxncriterion = nn.CrossEntropyLoss()print(model_ft)# Train and evaluatemodel_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=False)
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
亚洲香蕉成人av网站在线观看_欧美精品成人91久久久久久久_久久久久久久久久久亚洲_热久久视久久精品18亚洲精品_国产精自产拍久久久久久_亚洲色图国产精品_91精品国产网站_中文字幕欧美日韩精品_国产精品久久久久久亚洲调教_国产精品久久一区_性夜试看影院91社区_97在线观看视频国产_68精品久久久久久欧美_欧美精品在线观看_国产精品一区二区久久精品_欧美老女人bb
欧美乱大交xxxxx另类电影| 成人在线视频网| 国产成人精品一区二区| 亚洲国产精品一区二区久| 精品国产网站地址| 久久久久久久爱| 国产精品自产拍高潮在线观看| 欧美在线激情视频| 精品国产欧美一区二区三区成人| 亚洲成年人在线播放| 狠狠做深爱婷婷久久综合一区| 欧美性猛交xxxx黑人猛交| 欧美日韩xxxxx| 欧美人与性动交| 欧美日韩在线观看视频| 91视频国产精品| 欧美午夜精品久久久久久浪潮| 欧美成人h版在线观看| 亚洲成人性视频| 日韩欧美中文第一页| 久久久久久综合网天天| 国产亚洲精品美女久久久| 久久久久久这里只有精品| 在线精品国产成人综合| 亚洲影院色无极综合| 亚洲一区二区三区在线视频| 欧美激情极品视频| 日韩精品在线播放| 国产日韩专区在线| 亚洲国产成人在线播放| 一区二区三区视频观看| 日韩在线免费av| 中文字幕亚洲精品| 91国自产精品中文字幕亚洲| 亚洲免费伊人电影在线观看av| 亚洲欧洲国产精品| 奇米4444一区二区三区| 亚洲视频网站在线观看| 欧美猛交免费看| 日本高清视频精品| 日韩av片免费在线观看| 亚洲精品美女网站| 久久成人综合视频| 日韩va亚洲va欧洲va国产| 日韩精品在线电影| 亚洲一区国产精品| 日韩一区二区精品视频| 伊人伊成久久人综合网小说| 尤物九九久久国产精品的特点| 国产精品99久久久久久www| 国产视频欧美视频| 日韩视频在线观看免费| 成人在线精品视频| xxxx性欧美| 少妇高潮久久77777| 日韩免费观看在线观看| 不卡av在线网站| 国产精品久久99久久| 欧美午夜精品在线| 姬川优奈aav一区二区| 大荫蒂欧美视频另类xxxx| 亚洲国产小视频在线观看| 欧美不卡视频一区发布| 久久精品夜夜夜夜夜久久| 91精品视频专区| 国产精品成人免费电影| 国产日韩在线亚洲字幕中文| 欧美xxxx综合视频| 尤物yw午夜国产精品视频明星| 日韩三级影视基地| 中文字幕一区二区三区电影| 亚洲性夜色噜噜噜7777| www.日本久久久久com.| 91久久久久久久久久久| 神马久久久久久| 亚洲va电影大全| 欧美极品少妇全裸体| 久久国内精品一国内精品| 日韩中文字幕精品视频| 欧美性猛交xxxx黑人猛交| 国产精品色婷婷视频| 在线看国产精品| 国产精品福利无圣光在线一区| 日韩av综合网| 日韩高清不卡av| 一本色道久久88综合亚洲精品ⅰ| 欧美乱大交xxxxx| 色综合老司机第九色激情| 91地址最新发布| 日韩在线免费视频| 国产精品久久久一区| 日韩精品日韩在线观看| 色综合久久88色综合天天看泰| 久久久久久12| 精品少妇v888av| 欧美激情视频一区二区三区不卡| 欧美日韩在线一区| 国产精品激情av在线播放| 日韩av在线电影网| 久久久久www| 国产激情综合五月久久| 最近2019中文字幕一页二页| 第一福利永久视频精品| 91久久国产精品| 午夜精品美女自拍福到在线| 91久久精品国产| 精品国产一区二区三区四区在线观看| 日韩亚洲精品电影| 国产精品视频一区二区三区四| 国产成人精品999| 欧美午夜精品久久久久久浪潮| 欧美激情精品久久久久久变态| 亚洲片在线资源| 亚洲国产美女久久久久| 久久伊人免费视频| 国产午夜精品久久久| 欧洲精品毛片网站| 欧美老女人在线视频| 欧美大人香蕉在线| 国产精品视频精品| 在线观看日韩www视频免费| 久久综合免费视频影院| 日韩a**站在线观看| 欧洲成人午夜免费大片| 国产91免费看片| 国产成人91久久精品| 久久久久久高潮国产精品视| 国产精品精品一区二区三区午夜版| 狠狠色狠狠色综合日日小说| 91人人爽人人爽人人精88v| 美女视频黄免费的亚洲男人天堂| 久久久成人的性感天堂| 国产精品96久久久久久又黄又硬| 亚洲欧美国产日韩天堂区| 久久91亚洲人成电影网站| 国产亚洲欧美另类中文| 久久久www成人免费精品张筱雨| 日韩电视剧在线观看免费网站| 国产精品视频资源| 成人av资源在线播放| 日韩精品视频免费| 亚洲国产三级网| 国产美女久久久| 欧美高清在线观看| 亚洲国产精品女人久久久| 久久久精品网站| 欧美乱妇40p| 91精品国产精品| 欧美贵妇videos办公室| 一本色道久久综合亚洲精品小说| 热99精品里视频精品| 日韩在线观看免费全集电视剧网站| 日韩在线视频一区| 久操成人在线视频| 91亚洲精品在线| 91在线高清视频| 国产精品第七影院| 久久久91精品| 亚洲第一精品电影| 成人国产精品久久久| 久久视频这里只有精品| 久久精品成人一区二区三区| 最近的2019中文字幕免费一页| 国产成人精品在线观看|