本文實例講述了C++的回溯法,分享給大家供大家參考之用。具體方法分析如下:
一般來說,回溯法是一種枚舉狀態空間中所有可能狀態的系統方法,它是一個一般性的算法框架。
解向量a=(a1, a2, ..., an),其中每個元素ai取自一個有限序列集Si,這樣的解向量可以表示一個排列,其中ai是排列中的第i個元素,也可以表示子集S,其中ai為真當且僅當全集中的第i個元素在S中;甚至可以表示游戲的行動序列或者圖中的路徑。
在回溯法的每一步,我們從一個給定的部分解a={a1, a2, ..., ak}開始,嘗試在最后添加元素來擴展這個部分解,擴展之后,我們必須測試它是否為一個完整解,如果是的話,就輸出這個解;如果不完整,我們必須檢查這個部分解是否仍有可能擴展成完整解,如果有可能,遞歸下去;如果沒可能,從a中刪除新加入的最后一個元素,然后嘗試該位置上的其他可能性。
用一個全局變量來控制回溯是否完成,這個變量設為finished,那么回溯框架如下,可謂是回溯大法之精髓與神器
bool finished = false;void backTack(int input[], int inputSize, int index, int states[], int stateSize){ int candidates[MAXCANDIDATE]; int ncandidates; if (isSolution(input, inputSize, index) == true) { processSolution(input, inputSize, index); } else { constructCandidate(input, inputSize, index, candidates, &ncandidates); for (int i = 0; i < ncandidates; i++) { input[index] = candidates[i]; backTack(input, inputSize, index + 1); if (finished) return; } }}
不拘泥于框架的形式,我們可以編寫出如下代碼:
#include <iostream>using namespace std;char str[] = "abc";const int size = 3;int constructCandidate(bool *flag, int size = 2){ flag[0] = true; flag[1] = false; return 2;}void printCombine(const char *str, bool *flag, int pos, int size){ if (str == NULL || flag == NULL || size <= 0) return; if (pos == size) { cout << "{ "; for (int i = 0; i < size; i++) { if (flag[i] == true) cout << str[i] << " "; } cout << "}" << endl; } else { bool candidates[2]; int number = constructCandidate(candidates); for (int j = 0; j < number; j++) { flag[pos] = candidates[j]; printCombine(str, flag, pos + 1, size); } }}void main(){ bool *flag = new bool[size]; if (flag == NULL) return; printCombine(str, flag, 0, size); delete []flag;}
采用回溯法框架來計算字典序排列:
#include <iostream>using namespace std;char str[] = "abc";const int size = 3;void constructCandidate(char *input, int inputSize, int index, char *states, char *candidates, int *ncandidates){ if (input == NULL || inputSize <= 0 || index < 0 || candidates == NULL || ncandidates == NULL) return; bool buff[256]; for (int i = 0; i < 256; i++) buff[i] = false; int count = 0; for (int i = 0; i < index; i++) { buff[states[i]] = true; } for (int i = 0; i < inputSize; i++) { if (buff[input[i]] == false) candidates[count++] = input[i]; } *ncandidates = count; return;}bool isSolution(int index, int inputSize){ if (index == inputSize) return true; else return false;}void processSolution(char *input, int inputSize){ if (input == NULL || inputSize <= 0) return; for (int i = 0; i < inputSize; i++) cout << input[i]; cout << endl;}void backTack(char *input, int inputSize, int index, char *states, int stateSize){ if (input == NULL || inputSize <= 0 || index < 0 || states == NULL || stateSize <= 0) return; char candidates[100]; int ncandidates; if (isSolution(index, inputSize) == true) { processSolution(states, inputSize); return; } else { constructCandidate(input, inputSize, index, states, candidates, &ncandidates); for (int i = 0; i < ncandidates; i++) { states[index] = candidates[i]; backTack(input, inputSize, index + 1, states, stateSize); } }}void main(){ char *candidates = new char[size]; if (candidates == NULL) return; backTack(str, size, 0, candidates, size); delete []candidates;}
對比上述兩種情形,可以發現唯一的區別在于全排列對當前解向量沒有要求,而字典序對當前解向量是有要求的,需要知道當前解的狀態!
八皇后回溯法求解:
#include <iostream>using namespace std;int position[8];void constructCandidate(int *input, int inputSize, int index, int *states, int *candidates, int *ncandidates){ if (input == NULL || inputSize <= 0 || index < 0 || candidates == NULL || ncandidates == NULL) return; *ncandidates = 0; bool flag; for (int i = 0; i < inputSize; i++) { flag = true; for (int j = 0; j < index; j++) { if (abs(index - j) == abs(i - states[j])) flag = false; if (i == states[j]) flag = false; } if (flag == true) { candidates[*ncandidates] = i; *ncandidates = *ncandidates + 1; } }/* cout << "ncandidates = " << *ncandidates << endl; system("pause");*/ return;}bool isSolution(int index, int inputSize){ if (index == inputSize) return true; else return false;}void processSolution(int &count){ count++;}void backTack(int *input, int inputSize, int index, int *states, int stateSize, int &count){ if (input == NULL || inputSize <= 0 || index < 0 || states == NULL || stateSize <= 0) return; int candidates[8]; int ncandidates; if (isSolution(index, inputSize) == true) { processSolution(count); } else { constructCandidate(input, inputSize, index, states, candidates, &ncandidates); for (int i = 0; i < ncandidates; i++) { states[index] = candidates[i]; backTack(input, inputSize, index + 1, states, stateSize, count); } }}void main(){ //初始化棋局 for (int i = 0; i < 8; i++) position[i] = i; int states[8]; int count = 0; backTack(position, 8, 0, states, 8, count); cout << "count = " << count << endl;}
希望本文所述對大家C++程序算法設計的學習有所幫助。
新聞熱點
疑難解答
圖片精選