本文實例為大家分享了OpenCV實現拼接圖像的具體方法,供大家參考,具體內容如下
用iphone拍攝的兩幅圖像:
拼接后的圖像:
相關代碼如下:
//讀取圖像Mat leftImg=imread("left.jpg");Mat rightImg=imread("right.jpg");if(leftImg.data==NULL||rightImg.data==NULL) return; //轉化成灰度圖Mat leftGray;Mat rightGray;cvtColor(leftImg,leftGray,CV_BGR2GRAY);cvtColor(rightImg,rightGray,CV_BGR2GRAY); //獲取兩幅圖像的共同特征點int minHessian=400;SurfFeatureDetector detector(minHessian);vector<KeyPoint> leftKeyPoints,rightKeyPoints;detector.detect(leftGray,leftKeyPoints);detector.detect(rightGray,rightKeyPoints);SurfDescriptorExtractor extractor;Mat leftDescriptor,rightDescriptor;extractor.compute(leftGray,leftKeyPoints,leftDescriptor);extractor.compute(rightGray,rightKeyPoints,rightDescriptor);FlannBasedMatcher matcher;vector<DMatch> matches;matcher.match(leftDescriptor,rightDescriptor,matches); int matchCount=leftDescriptor.rows;if(matchCount>15){ matchCount=15; sort(matches.begin(),matches.begin()+leftDescriptor.rows,DistanceLessThan);} vector<Point2f> leftPoints;vector<Point2f> rightPoints;for(int i=0; i<matchCount; i++){ leftPoints.push_back(leftKeyPoints[matches[i].queryIdx].pt); rightPoints.push_back(rightKeyPoints[matches[i].trainIdx].pt);} //獲取左邊圖像到右邊圖像的投影映射關系Mat homo=findHomography(leftPoints,rightPoints);Mat shftMat=(Mat_<double>(3,3)<<1.0,0,leftImg.cols, 0,1.0,0, 0,0,1.0); //拼接圖像Mat tiledImg;warpPerspective(leftImg,tiledImg,shftMat*homo,Size(leftImg.cols+rightImg.cols,rightImg.rows));rightImg.copyTo(Mat(tiledImg,Rect(leftImg.cols,0,rightImg.cols,rightImg.rows))); //保存圖像imwrite("tiled.jpg",tiledImg); //顯示拼接的圖像imshow("tiled image",tiledImg);waitKey(0);
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持武林網。
新聞熱點
疑難解答
圖片精選