這篇文章主要介紹了Python聚類算法之基本K均值運算技巧,結合實例形式較為詳細的分析了基本K均值的原理與相關實現技巧,具有一定參考借鑒價值,需要的朋友可以參考下
本文實例講述了Python聚類算法之基本K均值運算技巧。分享給大家供大家參考,具體如下:
基本K均值
:選擇 K 個初始質心,其中 K 是用戶指定的參數,即所期望的簇的個數。每次循環中,每個點被指派到最近的質心,指派到同一個質心的點集構成一個。然后,根據指派到簇的點,更新每個簇的質心。重復指派和更新操作,直到質心不發生明顯的變化。
- # scoding=utf-8
- import pylab as pl
- points = [[int(eachpoint.split("#")[0]), int(eachpoint.split("#")[1])] for eachpoint in open("points","r")]
- # 指定三個初始質心
- currentCenter1 = [20,190]; currentCenter2 = [120,90]; currentCenter3 = [170,140]
- pl.plot([currentCenter1[0]], [currentCenter1[1]],'ok')
- pl.plot([currentCenter2[0]], [currentCenter2[1]],'ok')
- pl.plot([currentCenter3[0]], [currentCenter3[1]],'ok')
- # 記錄每次迭代后每個簇的質心的更新軌跡
- center1 = [currentCenter1]; center2 = [currentCenter2]; center3 = [currentCenter3]
- # 三個簇
- group1 = []; group2 = []; group3 = []
- for runtime in range(50):
- group1 = []; group2 = []; group3 = []
- for eachpoint in points:
- # 計算每個點到三個質心的距離
- distance1 = pow(abs(eachpoint[0]-currentCenter1[0]),2) + pow(abs(eachpoint[1]-currentCenter1[1]),2)
- distance2 = pow(abs(eachpoint[0]-currentCenter2[0]),2) + pow(abs(eachpoint[1]-currentCenter2[1]),2)
- distance3 = pow(abs(eachpoint[0]-currentCenter3[0]),2) + pow(abs(eachpoint[1]-currentCenter3[1]),2)
- # 將該點指派到離它最近的質心所在的簇
- mindis = min(distance1,distance2,distance3)
- if(mindis == distance1):
- group1.append(eachpoint)
- elif(mindis == distance2):
- group2.append(eachpoint)
- else:
- group3.append(eachpoint)
- # 指派完所有的點后,更新每個簇的質心
- currentCenter1 = [sum([eachpoint[0] for eachpoint in group1])/len(group1),sum([eachpoint[1] for eachpoint in group1])/len(group1)]
- currentCenter2 = [sum([eachpoint[0] for eachpoint in group2])/len(group2),sum([eachpoint[1] for eachpoint in group2])/len(group2)]
- currentCenter3 = [sum([eachpoint[0] for eachpoint in group3])/len(group3),sum([eachpoint[1] for eachpoint in group3])/len(group3)]
- # 記錄該次對質心的更新
- center1.append(currentCenter1)
- center2.append(currentCenter2)
- center3.append(currentCenter3)
- # 打印所有的點,用顏色標識該點所屬的簇
- pl.plot([eachpoint[0] for eachpoint in group1], [eachpoint[1] for eachpoint in group1], 'or')
- pl.plot([eachpoint[0] for eachpoint in group2], [eachpoint[1] for eachpoint in group2], 'oy')
- pl.plot([eachpoint[0] for eachpoint in group3], [eachpoint[1] for eachpoint in group3], 'og')
- # 打印每個簇的質心的更新軌跡
- for center in [center1,center2,center3]:
- pl.plot([eachcenter[0] for eachcenter in center], [eachcenter[1] for eachcenter in center],'k')
- pl.show()
運行效果截圖如下:
希望本文所述對大家Python程序設計有所幫助。
新聞熱點
疑難解答