CAS算法(compare and swap)
CAS算法是一種有名的無鎖算法。無鎖編程,即不使用鎖的情況下實現多線程之間的變量同步,也就是在沒有線程被阻塞的情況下實現變量的同步,所以也叫非阻塞同步(Non-blocking Synchronization)。CAS算法涉及到三個操作數
當且僅當 V 的值等于 A時,CAS通過原子方式用新值B來更新V的值,否則不會執行任何操作(比較和替換是一個原子操作)。一般情況下是一個自旋操作,即不斷的重試。
自旋鎖
自旋鎖是指當一個線程在獲取鎖的時候,如果鎖已經被其他線程獲取,那么該線程將循環等待,然后不斷地判斷是否能夠被成功獲取,知直到獲取到鎖才會退出循環。
獲取鎖的線程一直處于活躍狀態,但是并沒有執行任何有效的任務,使用這種鎖會造成 busy-waiting 。
它是為實現保護共享資源而提出的一種鎖機制。其實,自旋鎖與互斥鎖比較類似,它們都是為了解決某項資源的互斥使用。無論是互斥鎖,還是自旋鎖,在任何時刻,最多只能由一個保持者,也就說,在任何時刻最多只能有一個執行單元獲得鎖。但是兩者在調度機制上略有不同。對于互斥鎖,如果資源已經被占用,資源申請者只能進入睡眠狀態。但是自旋鎖不會引起調用者睡眠,如果自旋鎖已經被別的執行單元保持,調用者就一直循環在那里看是否該自旋鎖的保持者已經釋放了鎖,“自旋”一詞就是因此而得名。
golang實現自旋鎖
type spinLock uint32func (sl *spinLock) Lock() { for !atomic.CompareAndSwapUint32((*uint32)(sl), 0, 1) { runtime.Gosched() }}func (sl *spinLock) Unlock() { atomic.StoreUint32((*uint32)(sl), 0)}func NewSpinLock() sync.Locker { var lock spinLock return &lock}
可重入的自旋鎖和不可重入的自旋鎖
文章開始的時候的那段代碼,仔細分析一下就可以看出,它是不支持重入的,即當一個線程第一次已經獲取到了該鎖,在鎖釋放之前又一次重新獲取該鎖,第二次就不能成功獲取到。由于不滿足CAS,所以第二次獲取會進入while循環等待,而如果是可重入鎖,第二次也是應該能夠成功獲取到的。
而且,即使第二次能夠成功獲取,那么當第一次釋放鎖的時候,第二次獲取到的鎖也會被釋放,而這是不合理的。
為了實現可重入鎖,我們需要引入一個計數器,用來記錄獲取鎖的線程數
type spinLock struct { owner int count int}func (sl *spinLock) Lock() { me := GetGoroutineId() if spinLock .owner == me { // 如果當前線程已經獲取到了鎖,線程數增加一,然后返回 sl.count++ return } // 如果沒獲取到鎖,則通過CAS自旋 for !atomic.CompareAndSwapUint32((*uint32)(sl), 0, 1) { runtime.Gosched() }}func (sl *spinLock) Unlock() { if rl.owner != GetGoroutineId() { panic("illegalMonitorStateError") } if sl.count >0 { // 如果大于0,表示當前線程多次獲取了該鎖,釋放鎖通過count減一來模擬 sl.count-- }else { // 如果count==0,可以將鎖釋放,這樣就能保證獲取鎖的次數與釋放鎖的次數是一致的了。 atomic.StoreUint32((*uint32)(sl), 0) }}func GetGoroutineId() int { defer func() { if err := recover(); err != nil { fmt.Println("panic recover:panic info:%v", err) } }() var buf [64]byte n := runtime.Stack(buf[:], false) idField := strings.Fields(strings.TrimPrefix(string(buf[:n]), "goroutine "))[0] id, err := strconv.Atoi(idField) if err != nil { panic(fmt.Sprintf("cannot get goroutine id: %v", err)) } return id}func NewSpinLock() sync.Locker { var lock spinLock return &lock}
自旋鎖的其他變種
1. TicketLock
TicketLock主要解決的是公平性的問題。
思路:每當有線程獲取鎖的時候,就給該線程分配一個遞增的id,我們稱之為排隊號,同時,鎖對應一個服務號,每當有線程釋放鎖,服務號就會遞增,此時如果服務號與某個線程排隊號一致,那么該線程就獲得鎖,由于排隊號是遞增的,所以就保證了最先請求獲取鎖的線程可以最先獲取到鎖,就實現了公平性。
可以想象成銀行辦理業務排隊,排隊的每一個顧客都代表一個需要請求鎖的線程,而銀行服務窗口表示鎖,每當有窗口服務完成就把自己的服務號加一,此時在排隊的所有顧客中,只有自己的排隊號與服務號一致的才可以得到服務。
2. CLHLock
CLH鎖是一種基于鏈表的可擴展、高性能、公平的自旋鎖,申請線程只在本地變量上自旋,它不斷輪詢前驅的狀態,如果發現前驅釋放了鎖就結束自旋,獲得鎖。
3. MCSLock
MCSLock則是對本地變量的節點進行循環。
4. CLHLock 和 MCSLock
都是基于鏈表,不同的是CLHLock是基于隱式鏈表,沒有真正的后續節點屬性,MCSLock是顯示鏈表,有一個指向后續節點的屬性。
將獲取鎖的線程狀態借助節點(node)保存,每個線程都有一份獨立的節點,這樣就解決了TicketLock多處理器緩存同步的問題。
自旋鎖與互斥鎖
總結:
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持VEVB武林網。
新聞熱點
疑難解答