對比測試 scipy.misc 和 PIL.Image 和 libtiff.TIFF 三個庫
輸入:
1. (讀取矩陣) 讀入uint8、uint16、float32的lena.tif
2. (生成矩陣) 使用numpy產生隨機矩陣,float64的mat
import numpy as npfrom scipy import miscfrom PIL import Imagefrom libtiff import TIFF ## 讀入已有圖像,數據類型和原圖像一致tif32 = misc.imread('./test/lena32.tif') #<class 'numpy.float32'>tif16 = misc.imread('./test/lena16.tif') #<class 'numpy.uint16'>tif8 = misc.imread('./test/lena8.tif') #<class 'numpy.uint8'># 產生隨機矩陣,數據類型float64np.random.seed(12345)flt = np.random.randn(512, 512) #<class 'numpy.float64'># 轉換float64矩陣type,為后面作測試z8 = (flt.astype(np.uint8)) #<class 'numpy.uint8'>z16 = (flt.astype(np.uint16)) #<class 'numpy.uint16'>z32 = (flt.astype(np.float32)) #<class 'numpy.float32'>
①對讀取圖像和隨機矩陣的存儲
# scipy.misc『不論輸入數據是何類型,輸出圖像均為uint8』misc.imsave('./test/lena32_scipy.tif', tif32) #--> 8bit(tif16和tif8同)misc.imsave('./test//randmat64_scipy.tif', flt) #--> 8bitmisc.imsave('./test//randmat8_scipy.tif', z8) #--> 8bit(z16和z32同)# PIL.Image『8位16位輸出圖像與輸入數據類型保持一致,64位會存成32位』Image.fromarray(tif32).save('./test/lena32_Image.tif') #--> 32bitImage.fromarray(tif16).save('./test/lena16_Image.tif') #--> 16bitImage.fromarray(tif8).save('./test/lena8_Image.tif') #--> 8bitImage.fromarray(flt).save('./test//randmat_Image.tif') #--> 32bit(flt.min~flt.max)im = Image.fromarray(flt.astype(np.float32)) im.save('./test//randmat32_Image.tif') #--> 32bit(灰度值范圍同上)#『uint8和uint16類型轉換,會使輸出圖像灰度變換到255和65535』im = Image.frombytes('I;16', (512, 512), flt.tostring())im.save('./test//randmat16_Image1.tif') #--> 16bit(0~65535)im = Image.fromarray(flt.astype(np.uint16)) im.save('./test//randmat16_Image2.tif') #--> 16bit(0~65535)im = Image.fromarray(flt.astype(np.uint8)) im.save('./test//randmat8_Image.tif') #--> 8bit(0~255)# libtiff.TIFF『輸出圖像與輸入數據類型保持一致』tif = TIFF.open('./test//randmat_TIFF.tif', mode='w') tif.write_image(flt, compression=None)tif.close() #float64可以存儲,但因BitsPerSample=64,一些圖像軟件不識別tif = TIFF.open('./test//randmat32_TIFF.tif', mode='w') tif.write_image(flt.astype(np.float32), compression=None)tif.close() #--> 32bit(flt.min~flt.max)#『uint8和uint16類型轉換,會使輸出圖像灰度變換到255和65535』tif = TIFF.open('./test//randmat16_TIFF.tif', mode='w') tif.write_image(flt.astype(np.uint16), compression=None)tif.close() #--> 16bit(0~65535,8位則0~255)
②圖像或矩陣歸一化對存儲的影響
# 『使用scipy,只能存成uint8』z16Norm = (z16-np.min(z16))/(np.max(z16)-np.min(z16)) #<class 'numpy.float64'>z32Norm = (z32-np.min(z32))/(np.max(z32)-np.min(z32))scipy.misc.imsave('./test//randmat16_norm_scipy.tif', z16Norm) #--> 8bit(0~255)# 『使用Image,歸一化后變成np.float64 直接轉8bit或16bit都會超出閾值,要*255或*65535』# 『如果沒有astype的位數設置,float64會直接存成32bit』im = Image.fromarray(z16Norm)im.save('./test//randmat16_norm_Image.tif') #--> 32bit(0~1)im = Image.fromarray(z16Norm.astype(np.float32))im.save('./test//randmat16_norm_to32_Image.tif') #--> 32bit(灰度范圍值同上)im = Image.fromarray(z16Norm.astype(np.uint16))im.save('./test//randmat16_norm_to16_Image.tif') #--> 16bit(0~1)超出閾值im = Image.fromarray(z16Norm.astype(np.uint8))im.save('./test//randmat16_norm_to8_Image.tif') #--> 8bit(0~1)超出閾值im = Image.fromarray((z16Norm*65535).astype(np.uint16))im.save('./test//randmat16_norm_to16_Image1.tif') #--> 16bit(0~65535)im = Image.fromarray((z16Norm*255).astype(np.uint16))im.save('./test//randmat16_norm_to16_Image2.tif') #--> 16bit(0~255)im = Image.fromarray((z16Norm*255).astype(np.uint8))im.save('./test//randmat16_norm_to8_Image2.tif') #--> 8bit(0~255)# 『使用TIFF結果同Image』
新聞熱點
疑難解答