pytorch 在torchvision包里面有很多的的打包好的數據集,例如minist,Imagenet-12,CIFAR10 和CIFAR100。在torchvision的dataset包里面,用的時候直接調用就行了。具體的調用格式可以去看文檔(目前好像只有英文的)。網上也有很多源代碼。
不過,當我們想利用自己制作的數據集來訓練網絡模型時,就要有自己的方法了。pytorch在torchvision.dataset包里面封裝過一個函數ImageFolder()。這個函數功能很強大,只要你直接將數據集路徑保存為例如“train/1/1.jpg ,rain/1/2.jpg …… ”就可以根據根目錄“./train”將數據集裝載了。
dataset.ImageFolder(root="datapath", transfroms.ToTensor())
但是后來我發現一個問題,就是這個函數加載出來的圖像矩陣都是三通道的,并且沒有什么參數調用可以讓其變為單通道。如果我們要用到單通道數據集(灰度圖)的話,比如自己加載Lenet-5模型的數據集,就只能自己寫numpy數組再轉為pytorch的Tensor()張量了。
接下來是我做的過程:
首先,還是要用到opencv,用灰度圖打開一張圖片,省事。
#讀取圖片 這里是灰度圖 for item in all_path: img = cv2.imread(item[1],0) img = cv2.resize(img,(28,28)) arr = np.asarray(img,dtype="float32") data_x[i ,:,:,:] = arr i+=1 data_y.append(int(item[0])) data_x = data_x / 255 data_y = np.asarray(data_y)
其次,pytorch有自己的numpy轉Tensor函數,直接轉就行了。
data_x = torch.from_numpy(data_x) data_y = torch.from_numpy(data_y)
下一步利用torch.util和torchvision里面的dataLoader函數,就能直接得到和torchvision.dataset里面封裝好的包相同的數據集樣本了
dataset = dataf.TensorDataset(data_x,data_y) loader = dataf.DataLoader(dataset, batch_size=batchsize, shuffle=True)
最后就是自己建網絡設計參數訓練了,這部分和文檔以及github中的差不多,就不贅述了。
下面是整個程序的源代碼,我利用的還是上次的車標識別的數據集,一共分四類,用的是2層卷積核兩層全連接。
源代碼:
# coding=utf-8import osimport cv2import numpy as npimport random import torchimport torch.nn as nnimport torch.utils.data as dataffrom torch.autograd import Variableimport torch.nn.functional as Fimport torch.optim as optim #訓練參數cuda = Falsetrain_epoch = 20train_lr = 0.01train_momentum = 0.5batchsize = 5 #測試訓練集路徑test_path = "/home/test/"train_path = "/home/train/" #路徑數據all_path =[] def load_data(data_path): signal = os.listdir(data_path) for fsingal in signal: filepath = data_path+fsingal filename = os.listdir(filepath) for fname in filename: ffpath = filepath+"/"+fname path = [fsingal,ffpath] all_path.append(path) #設立數據集多大 count = len(all_path) data_x = np.empty((count,1,28,28),dtype="float32") data_y = []#打亂順序 random.shuffle(all_path) i=0; #讀取圖片 這里是灰度圖 最后結果是i*i*i*i#分別表示:batch大小 , 通道數, 像素矩陣 for item in all_path: img = cv2.imread(item[1],0) img = cv2.resize(img,(28,28)) arr = np.asarray(img,dtype="float32") data_x[i ,:,:,:] = arr i+=1 data_y.append(int(item[0])) data_x = data_x / 255 data_y = np.asarray(data_y)# lener = len(all_path) data_x = torch.from_numpy(data_x) data_y = torch.from_numpy(data_y) dataset = dataf.TensorDataset(data_x,data_y) loader = dataf.DataLoader(dataset, batch_size=batchsize, shuffle=True) return loader# print data_y train_load = load_data(train_path)test_load = load_data(test_path) class L5_NET(nn.Module): def __init__(self): super(L5_NET ,self).__init__(); #第一層輸入1,20個卷積核 每個5*5 self.conv1 = nn.Conv2d(1 , 20 , kernel_size=5) #第二層輸入20,30個卷積核 每個5*5 self.conv2 = nn.Conv2d(20 , 30 , kernel_size=5) #drop函數 self.conv2_drop = nn.Dropout2d() #全鏈接層1,展開30*4*4,連接層50個神經元 self.fc1 = nn.Linear(30*4*4,50) #全鏈接層1,50-4 ,4為最后的輸出分類 self.fc2 = nn.Linear(50,4) #前向傳播 def forward(self,x): #池化層1 對于第一層卷積池化,池化核2*2 x = F.relu(F.max_pool2d( self.conv1(x) ,2 ) ) #池化層2 對于第二層卷積池化,池化核2*2 x = F.relu(F.max_pool2d( self.conv2_drop( self.conv2(x) ) , 2 ) ) #平鋪軸30*4*4個神經元 x = x.view(-1 , 30*4*4) #全鏈接1 x = F.relu( self.fc1(x) ) #dropout鏈接 x = F.dropout(x , training= self.training) #全鏈接w x = self.fc2(x) #softmax鏈接返回結果 return F.log_softmax(x) model = L5_NET()if cuda : model.cuda() optimizer = optim.SGD(model.parameters() , lr =train_lr , momentum = train_momentum ) #預測函數def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_load): if cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) #求導 optimizer.zero_grad() #訓練模型,輸出結果 output = model(data) #在數據集上預測loss loss = F.nll_loss(output, target) #反向傳播調整參數pytorch直接可以用loss loss.backward() #SGD刷新進步 optimizer.step() #實時輸出 if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]/tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_load.dataset), 100. * batch_idx / len(train_load), loss.data[0]))# #測試函數def test(epoch): model.eval() test_loss = 0 correct = 0 for data, target in test_load: if cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) #在測試集上預測 output = model(data) #計算在測試集上的loss test_loss += F.nll_loss(output, target).data[0] #獲得預測的結果 pred = output.data.max(1)[1] # get the index of the max log-probability #如果正確,correct+1 correct += pred.eq(target.data).cpu().sum() #loss計算 test_loss = test_loss test_loss /= len(test_load) #輸出結果 print('/nThe {} epoch result : Average loss: {:.6f}, Accuracy: {}/{} ({:.2f}%)/n'.format( epoch,test_loss, correct, len(test_load.dataset), 100. * correct / len(test_load.dataset))) for epoch in range(1, train_epoch+ 1): train(epoch) test(epoch)
新聞熱點
疑難解答