廢話不多說啦,直接看代碼吧!
tf.concat
t1 = [[1, 2, 3], [4, 5, 6]]t2 = [[7, 8, 9], [10, 11, 12]]tf.concat(0, [t1, t2]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]tf.concat(1, [t1, t2]) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]# tensor t3 with shape [2, 3]# tensor t4 with shape [2, 3]tf.shape(tf.concat(0, [t3, t4])) ==> [4, 3]tf.shape(tf.concat(1, [t3, t4])) ==> [2, 6]
numpy.concatenate
a = np.array([[1, 2], [3, 4]])b = np.array([[5, 6]])np.concatenate((a, b), axis=0)array([[1, 2], [3, 4], [5, 6]])np.concatenate((a, b.T), axis=1)array([[1, 2, 5], [3, 4, 6]])
以上這篇談一談數組拼接tf.concat()和np.concatenate()的區別就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持武林站長站。
新聞熱點
疑難解答