Java針對多線程下的數值安全計數器設計了一些類,這些類叫做原子類,其中一部分如下:
java.util.concurrent.atomic.AtomicBoolean;java.util.concurrent.atomic.AtomicInteger;java.util.concurrent.atomic.AtomicLong;java.util.concurrent.atomic.AtomicReference;
下面是一個對比 AtomicInteger 與 普通 int 值在多線程下的遞增測試,使用的是 junit4;
完整代碼:
package test.java;import java.util.concurrent.CountDownLatch;import java.util.concurrent.atomic.AtomicInteger;import org.junit.Assert;import org.junit.Before;import org.junit.Test;/** * 測試AtomicInteger與普通int值在多線程下的遞增操作 */public class TestAtomic { // 原子Integer遞增對象 public static AtomicInteger counter_integer;// = new AtomicInteger(0); // 一個int類型的變量 public static int count_int = 0; @Before public void setUp() { // 所有測試開始之前執行初始設置工作 counter_integer = new AtomicInteger(0); } @Test public void testAtomic() throws InterruptedException { // 創建的線程數量 int threadCount = 100; // 其他附屬線程內部循環多少次 int loopCount = 10000600; // 控制附屬線程的輔助對象;(其他await的線程先等著主線程喊開始) CountDownLatch latch_1 = new CountDownLatch(1); // 控制主線程的輔助對象;(主線程等著所有附屬線程都運行完畢再繼續) CountDownLatch latch_n = new CountDownLatch(threadCount); // 創建并啟動其他附屬線程 for (int i = 0; i < threadCount; i++) { Thread thread = new AtomicIntegerThread(latch_1, latch_n, loopCount); thread.start(); } long startNano = System.nanoTime(); // 讓其他等待的線程統一開始 latch_1.countDown(); // 等待其他線程執行完 latch_n.await(); // long endNano = System.nanoTime(); int sum = counter_integer.get(); // Assert.assertEquals("sum 不等于 threadCount * loopCount,測試失敗", sum, threadCount * loopCount); System.out.println("--------testAtomic(); 預期兩者相等------------"); System.out.println("耗時: " + ((endNano - startNano) / (1000 * 1000)) + "ms"); System.out.println("threadCount = " + (threadCount) + ";"); System.out.println("loopCount = " + (loopCount) + ";"); System.out.println("sum = " + (sum) + ";"); } @Test public void testIntAdd() throws InterruptedException { // 創建的線程數量 int threadCount = 100; // 其他附屬線程內部循環多少次 int loopCount = 10000600; // 控制附屬線程的輔助對象;(其他await的線程先等著主線程喊開始) CountDownLatch latch_1 = new CountDownLatch(1); // 控制主線程的輔助對象;(主線程等著所有附屬線程都運行完畢再繼續) CountDownLatch latch_n = new CountDownLatch(threadCount); // 創建并啟動其他附屬線程 for (int i = 0; i < threadCount; i++) { Thread thread = new IntegerThread(latch_1, latch_n, loopCount); thread.start(); } long startNano = System.nanoTime(); // 讓其他等待的線程統一開始 latch_1.countDown(); // 等待其他線程執行完 latch_n.await(); // long endNano = System.nanoTime(); int sum = count_int; // Assert.assertNotEquals( "sum 等于 threadCount * loopCount,testIntAdd()測試失敗", sum, threadCount * loopCount); System.out.println("-------testIntAdd(); 預期兩者不相等---------"); System.out.println("耗時: " + ((endNano - startNano) / (1000*1000))+ "ms"); System.out.println("threadCount = " + (threadCount) + ";"); System.out.println("loopCount = " + (loopCount) + ";"); System.out.println("sum = " + (sum) + ";"); } // 線程 class AtomicIntegerThread extends Thread { private CountDownLatch latch = null; private CountDownLatch latchdown = null; private int loopCount; public AtomicIntegerThread(CountDownLatch latch, CountDownLatch latchdown, int loopCount) { this.latch = latch; this.latchdown = latchdown; this.loopCount = loopCount; } @Override public void run() { // 等待信號同步 try { this.latch.await(); } catch (InterruptedException e) { e.printStackTrace(); } // for (int i = 0; i < loopCount; i++) { counter_integer.getAndIncrement(); } // 通知遞減1次 latchdown.countDown(); } } // 線程 class IntegerThread extends Thread { private CountDownLatch latch = null; private CountDownLatch latchdown = null; private int loopCount; public IntegerThread(CountDownLatch latch, CountDownLatch latchdown, int loopCount) { this.latch = latch; this.latchdown = latchdown; this.loopCount = loopCount; } @Override public void run() { // 等待信號同步 try { this.latch.await(); } catch (InterruptedException e) { e.printStackTrace(); } // for (int i = 0; i < loopCount; i++) { count_int++; } // 通知遞減1次 latchdown.countDown(); } }}
普通PC機上的執行結果類似如下:
--------------testAtomic(); 預期兩者相等-------------------耗時: 85366msthreadCount = 100;loopCount = 10000600;sum = 1000060000;--------------testIntAdd(); 預期兩者不相等-------------------耗時: 1406msthreadCount = 100;loopCount = 10000600;sum = 119428988;
從中可以看出, AtomicInteger操作 與 int操作的效率大致相差在50-80倍上下,當然,int很不消耗時間,這個對比只是提供一個參照。
如果確定是單線程執行,那應該使用 int; 而int在多線程下的操作執行的效率還是蠻高的, 10億次只花了1.5秒鐘;
(假設CPU是 2GHZ,雙核4線程,理論最大8GHZ,則每秒理論上有80億個時鐘周期,
10億次Java的int增加消耗了1.5秒,即 120億次運算, 算下來每次循環消耗CPU周期 12個;
個人覺得效率不錯, C 語言也應該需要4個以上的時鐘周期(判斷,執行內部代碼,自增判斷,跳轉)
前提是: JVM和CPU沒有進行激進優化.
)
而 AtomicInteger 效率其實也不低,10億次消耗了80秒, 那100萬次大約也就是千分之一,80毫秒的樣子.
新聞熱點
疑難解答