亚洲香蕉成人av网站在线观看_欧美精品成人91久久久久久久_久久久久久久久久久亚洲_热久久视久久精品18亚洲精品_国产精自产拍久久久久久_亚洲色图国产精品_91精品国产网站_中文字幕欧美日韩精品_国产精品久久久久久亚洲调教_国产精品久久一区_性夜试看影院91社区_97在线观看视频国产_68精品久久久久久欧美_欧美精品在线观看_国产精品一区二区久久精品_欧美老女人bb

首頁 > 學院 > 開發設計 > 正文

R 筆記

2019-11-10 20:29:09
字體:
來源:轉載
供稿:網友

begin note

調用命令:r CMD BATCH D:/RWORKSPACE/CMD_TEST.R  (注意 CMD BATCH 都要大寫)

ls(): 列出所有的變量名稱

ls(pattern ='v'): 根據pattern匹配

rm('xxx') 刪除變量

 rm(list=ls()) 刪除所有的變量> ls()character(0)

集合轉數組:

> vector1 <- c(5,9,3)> vector2 <- c(10,11,12,13,14,15)> column.names <- c("COL1","COL2","COL3")> row.names <- c("ROW1","ROW2","ROW3")> matrix.names <- c("Matrix1","Matrix2")> result <- array(c(vector1,vector2),dim=c(3,3,2),dimnames = list(column.names,row.names,matrix.names))> PRint(result), , Matrix1     ROW1 ROW2 ROW3COL1    5   10   13COL2    9   11   14COL3    3   12   15, , Matrix2     ROW1 ROW2 ROW3COL1    5   10   13COL2    9   11   14COL3    3   12   15

> # Print the third row of the second matrix of the array.> print(result[3,,2])ROW1 ROW2 ROW3    3   12   15 > > # Print the element in the 1st row and 3rd column of the 1st matrix.> print(result[1,3,1])[1] 13> > # Print the 2nd Matrix.> print(result[,,2])     ROW1 ROW2 ROW3COL1    5   10   13COL2    9   11   14COL3    3   12   15數組的操作:

# Create two vectors of different lengths.vector1 <- c(5,9,3)vector2 <- c(10,11,12,13,14,15)# Take these vectors as input to the array.array1 <- array(c(vector1,vector2),dim=c(3,3,2))# Create two vectors of different lengths.vector3 <- c(9,1,0)vector4 <- c(6,0,11,3,14,1,2,6,9)array2 <- array(c(vector1,vector2),dim=c(3,3,2))# create matrices from these arrays.matrix1 <- array1[,,2]matrix2 <- array2[,,2]# Add the matrices.result <- matrix1+matrix2print(result)
# Create two vectors of different lengths.vector1 <- c(5,9,3)vector2 <- c(10,11,12,13,14,15)# Take these vectors as input to the array.new.array <- array(c(vector1,vector2),dim=c(3,3,2))print(new.array)# Use apply to calculate the sum of the rows across all the matrices.計算所有矩陣每行的和result <- apply(new.array, c(1), sum)print(result)
# Create a vector as input.data <- c("East","West","East","North","North","East","West","West","West","East","North")print(data)print(is.factor(data))# Apply the factor function.factor_data <- factor(data)print(factor_data)print(is.factor(factor_data))#判斷是否是factor  , true
# Create the vectors for data frame.height <- c(132,151,162,139,166,147,122)weight <- c(48,49,66,53,67,52,40)gender <- c("male","male","female","female","male","female","male")# Create the data frame.input_data <- data.frame(height,weight,gender)print(input_data)# Test if the gender column is a factor.  a row of data frame is a factor, like thisprint(is.factor(input_data$gender))# Print the gender column so see the levels.print(input_data$gender)
data <- c("East","West","East","North","North","East","West","West","West","East","North")# Create the factorsfactor_data <- factor(data)print(factor_data)# Apply the factor function with required order of the level. 改變了level的順序new_order_data <- factor(factor_data,levels = c("East","West","North"))print(new_order_data)
gl(n, k, labels)

以下是所使用的參數的說明:

n 是一個整數來給出級別數k 是一個整數給出重復的數量labels 為所得到的因子級別標簽的向量。

示例

v <- gl(3, 4, labels = c("Tampa", "Seattle","Boston"))print(v)

創建數據幀

# Create the data frame.emp.data <- data.frame(	emp_id = c (1:5), 	emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),	salary = c(623.3,515.2,611.0,729.0,843.25), 	start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11","2015-03-27")),	stringsAsFactors=FALSE			)# Print the data frame.			print(emp.data) 

str(emp.data)
print(summary(emp.data))  
# Extract Specific columns.提取數據幀的列result <- data.frame(emp.data$emp_name,emp.data$salary)print(result)
result <- emp.data[1:2,]#提取數據的前兩行和所有的列print(result)
result <- emp.data[c(3,5),c(2,4)]# 提取3, 5 行的第2,4 列的數據print(result)
# Add the "dept" coulmn.添加列emp.data$dept <- c("IT","Operations","IT","HR","Finance")v <- emp.dataprint(v)

# Create the first data frame.emp.data <- data.frame(	emp_id = c (1:5), 	emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),	salary = c(623.3,515.2,611.0,729.0,843.25), 	start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11","2015-03-27")),	dept=c("IT","Operations","IT","HR","Finance"),	stringsAsFactors=FALSE			)# Create the second data frame, 添加行記錄emp.newdata <- 	data.frame(	emp_id = c (6:8), 	emp_name = c("Rasmi","Pranab","Tusar"),	salary = c(578.0,722.5,632.8), 	start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")),	dept = c("IT","Operations","Fianance"),	stringsAsFactors=FALSE				)# Bind the two data frames.emp.finaldata <- rbind(emp.data,emp.newdata)print(emp.finaldata)
install.packages(file_name_with_path, repos = NULL, type="source")# Install the package named "xml", 安裝packageinstall.packages("E:/XML_3.98-1.3.zip", repos = NULL, type="source")

# Create vector objects.city <- c("Tampa","Seattle","Hartford","Denver")state <- c("FL","WA","CT","CO")zipcode <- c(33602,98104,06161,80294)# Combine above three vectors into one data frame. cbind is column bind 行的結列addresses <- cbind(city,state,zipcode)# Print a header.cat("# # # # The First data frame/n") # Print the data frame.print(addresses)# Create another data frame with similar columnsnew.address <- data.frame(   city = c("Lowry","Charlotte"),   state = c("CO","FL"),   zipcode = c("80230","33949"),   stringsAsFactors=FALSE)# Print a header.cat("# # # The Second data frame/n") # Print the data frame.print(new.address)# Combine rows form both the data frames. rbind is row bind 結合行all.addresses <- rbind(addresses,new.address)# Print a header.cat("# # # The combined data frame/n") # Print the result.print(all.addresses)

melt and cast 

熔化和轉換

R語言編程的最有趣的地方是關于改變多個步驟中的數據的形狀來獲得所希望的形狀。用來做這種函數被稱為 melt() 和 cast()。

我們認為數據集被稱為 ships 出現在庫被稱為 "MASS".

library(MASS)print(ships)

當我們上面的代碼執行時,它產生以下結果:

   type year period service incidents1     A   60     60     127         02     A   60     75      63         03     A   65     60    1095         34     A   65     75    1095         45     A   70     60    1512         6..........................8     A   75     75    2244        119     B   60     60   44882        3910    B   60     75   17176        2911    B   65     60   28609        58........................17    C   60     60    1179         118    C   60     75     552         119    C   65     60     781         0........................

融化數據

現在,我們融化數據需要組織其轉換類型(type), 并且 year 到多行以外的所有列。

molten.ships <- melt(ships, id = c("type","year"))print(molten.ships)

當我們上面的代碼執行時,它產生以下結果:

    type year  variable value1      A   60    period    602      A   60    period    753      A   65    period    604      A   65    period    75........................9      B   60    period    6010     B   60    period    7511     B   65    period    6012     B   65    period    7513     B   70    period    60......................41     A   60   service   12742     A   60   service    6343     A   65   service  1095......................70     D   70   service  120871     D   75   service     072     D   75   service  205173     E   60   service    4574     E   60   service     075     E   65   service   789......................101    C   70 incidents     6102    C   70 incidents     2103    C   75 incidents     0104    C   75 incidents     1105    D   60 incidents     0106    D   60 incidents     0......................

轉換數據

我們可以轉化數據轉換成在創建每種類型的 ships 每年的匯總的新形式。它是通過使用 case()函數。

recasted.ship <- cast(molten.ships, type+year~variable,sum)print(recasted.ship)

當我們上面的代碼執行時,它產生以下結果:

   type year period service incidents1     A   60    135     190         02     A   65    135    2190         73     A   70    135    4865        244     A   75    135    2244        115     B   60    135   62058        686     B   65    135   48979       1117     B   70    135   20163        568     B   75    135    7117        189     C   60    135    1731         210    C   65    135    1457         111    C   70    135    2731         812    C   75    135     274         113    D   60    135     356         014    D   65    135     480         015    D   70    135    1557        1316    D   75    135    2051         417    E   60    135      45         018    E   65    135    1226        1419    E   70    135    3318        1720    E   75    135     542         1

讀一個CSV文件

以下是 read.csv()函數的一個簡單的例子,它讀取在當前工作目錄的可用的 CSV 文件:

data <- read.csv("input.csv")print(data)
data <- read.csv("input.csv")#分析data的行列情況print(is.data.frame(data))print(ncol(data))print(nrow(data))
# Get the person detail having max salary. 求最高工資記錄的具體情況retval <- subset(data, salary == max(salary))print(retval)

# Create a data frame.data <- read.csv("input.csv")info <- subset(data, salary > 600 & dept == "IT")#工資大于600 并且是IT部門的員工print(info)
# Create a data frame.data <- read.csv("input.csv")retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))#生日大于2014-1-1日print(retval)
# Load the packages required to read XML files.library("XML")library("methods")# Convert the input xml file to a data frame.xmldataframe <- xmlToDataFrame("input.xml")#加載xml里面的數據print(xmldataframe)
# Load the package required to read JSON files.library("rjson")# Give the input file name to the function.result <- fromJSON(file="input.json")# Print the result.print(result)
# Load the package required to read JSON files.library("rjson")# Give the input file name to the function.result <- fromJSON(file="input.json")# Convert JSON file to a data frame.json_data_frame <- as.data.frame(result)#json字符類型 到frame 幀print(json_data_frame)
# Create a connection Object to MySQL database.# We will connect to the sampel database named "sakila" that comes with MySql installation. mysqlconnection = dbConnect(MySQL(), user='root', passWord='', dbname='sakila', host='localhost')# List the tables available in this database. dbListTables(mysqlconnection)
# Query the "actor" tables to get all the rows.輸入sqlresult = dbSendQuery(mysqlconnection, "select * from actor")# Store the result in a R data frame object. n=5 is used to fetch first 5 rows.現在查詢的條數data.frame = fetch(result, n=5)print(data.fame)
# Create the function. 找到向量中出現次數最多的元素getmode <- function(v) {	uniqv <- unique(v)	uniqv[which.max(tabulate(match(v, uniqv)))]}# Create the vector with numbers.v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)# Calculate the mode using the user function. result <- getmode(v)print(result)

K線圖:

library(quantmod)sse<-getSymbols('^SSEC', from='2015-1-1',to=Sys.Date(), src='yahoo')SSEC.m <- to.monthly(SSEC)tail(SSEC.m)candleChart(SSEC.m,theme = 'white')


上一篇:va_list 詳解

下一篇:C#垃圾回收的大對象

發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
亚洲香蕉成人av网站在线观看_欧美精品成人91久久久久久久_久久久久久久久久久亚洲_热久久视久久精品18亚洲精品_国产精自产拍久久久久久_亚洲色图国产精品_91精品国产网站_中文字幕欧美日韩精品_国产精品久久久久久亚洲调教_国产精品久久一区_性夜试看影院91社区_97在线观看视频国产_68精品久久久久久欧美_欧美精品在线观看_国产精品一区二区久久精品_欧美老女人bb
日产日韩在线亚洲欧美| 精品国内产的精品视频在线观看| 91高清视频免费观看| 亚洲自拍偷拍视频| 91精品国产91久久久久久久久| 亚洲一区二区三区乱码aⅴ蜜桃女| 另类专区欧美制服同性| 国产精品三级美女白浆呻吟| 国产成+人+综合+亚洲欧美丁香花| 久久资源免费视频| 日韩精品中文字幕在线| 国产精品久久久| 欧美性xxxxx极品娇小| 91社影院在线观看| 日韩成人av在线播放| 欧美激情综合色| 亚洲人精品午夜在线观看| 精品国产一区二区三区久久久狼| 亚洲欧美日韩中文在线制服| 亚洲人成电影网站色…| 国语自产精品视频在线看| 国产精品av在线播放| 国产午夜精品全部视频播放| 97在线精品视频| 日韩中文字幕网站| 亚洲精品视频播放| 亚洲精品电影在线观看| www.欧美视频| 91精品视频免费看| 久久精品亚洲94久久精品| 久久国内精品一国内精品| 精品自拍视频在线观看| 另类色图亚洲色图| 亚洲国产天堂久久国产91| 成人免费视频网址| 日韩美女视频中文字幕| 亚洲精品久久久久久久久久久久| 国产丝袜高跟一区| 亚洲a区在线视频| 亚洲成人av片在线观看| 日韩欧美国产中文字幕| 亚洲欧美激情精品一区二区| 亚洲欧美国产精品va在线观看| 精品一区精品二区| 97香蕉超级碰碰久久免费软件| 成人在线激情视频| 亚洲国产精品成人一区二区| 国产日本欧美一区二区三区在线| 亚洲福利视频专区| 高清欧美性猛交xxxx黑人猛交| 国产精品入口免费视| 国产精品∨欧美精品v日韩精品| 91国产美女在线观看| 色先锋久久影院av| 日本亚洲精品在线观看| 97精品久久久中文字幕免费| 国产精品爱久久久久久久| 成人夜晚看av| 亚洲第一av在线| 亚洲成色777777女色窝| 操日韩av在线电影| 欧美精品九九久久| 国产亚洲欧美另类中文| 国产成人在线视频| 91av在线看| 色综合久综合久久综合久鬼88| 欧美高清在线视频观看不卡| 亚洲天堂av图片| 国产中文字幕91| 国产午夜精品美女视频明星a级| 亚洲欧洲国产精品| 激情成人在线视频| 欧美有码在线观看| 久久黄色av网站| 精品亚洲一区二区| 91亚洲午夜在线| 大桥未久av一区二区三区| 欧美性生交xxxxx久久久| 久久久久久久影院| 国产精品ⅴa在线观看h| 日韩av在线播放资源| 成人性生交大片免费看小说| 欧美亚洲另类在线| 久久久久亚洲精品| 国产精品人人做人人爽| 久久久视频免费观看| 欧美风情在线观看| 2019精品视频| 欧美激情按摩在线| 国产精品久久在线观看| 欧美丰满少妇xxxxx| 久久国产精彩视频| 亚洲精品国产精品乱码不99按摩| 色偷偷亚洲男人天堂| 国产婷婷成人久久av免费高清| 日韩中文在线观看| 精品久久中文字幕| 久久久久国产精品一区| 美女性感视频久久久| 久久久免费av| 欧美日韩中文字幕| 国产精品一区二区久久久久| 伦理中文字幕亚洲| 97婷婷大伊香蕉精品视频| 亚洲美女性生活视频| 国产精品久久久久久久久久| 亚洲一区二区三区视频播放| 中文在线资源观看视频网站免费不卡| 蜜臀久久99精品久久久无需会员| 亚洲综合中文字幕68页| 久久久久久网站| 欧美老女人www| 正在播放欧美一区| 亚洲无线码在线一区观看| 国产在线精品一区免费香蕉| 欧美电影在线观看网站| 中文字幕一精品亚洲无线一区| 国产视频精品在线| 国产精品夜色7777狼人| 97免费视频在线播放| 国产精品网站大全| 日韩中文字幕在线免费观看| 日韩高清不卡av| 久久天天躁狠狠躁夜夜爽蜜月| 成人激情黄色网| 国产主播欧美精品| 欧美成人精品在线视频| 欧美成人精品一区二区| 日韩av在线网址| 欧美亚洲日本黄色| 亚洲综合精品一区二区| 欧美亚洲国产日韩2020| 亚洲电影免费观看高清完整版| 国产一区二区三区在线免费观看| 日韩中文在线中文网在线观看| 国产精品色婷婷视频| 欧美日韩国产激情| 色妞色视频一区二区三区四区| 成人性教育视频在线观看| 亚洲国产精彩中文乱码av| 亚洲第一精品夜夜躁人人躁| 亚洲色图综合久久| 欧美—级高清免费播放| 欧美大片免费观看在线观看网站推荐| 91成人精品网站| 日韩成人在线播放| 大桥未久av一区二区三区| 狠狠躁18三区二区一区| 一区二区在线视频| 国产精品久久97| 国产91精品黑色丝袜高跟鞋| 亚洲欧美国产精品va在线观看| 国产午夜精品免费一区二区三区| 欧美国产亚洲精品久久久8v| 国产91色在线播放| 国产一区二区三区在线免费观看| 欧美日韩亚洲一区二| 91久久久久久国产精品| 亚洲国产日韩精品在线| 久久艳片www.17c.com| 97久久精品在线| 亚洲人线精品午夜| 国产主播喷水一区二区| 亚洲人成啪啪网站|