亚洲香蕉成人av网站在线观看_欧美精品成人91久久久久久久_久久久久久久久久久亚洲_热久久视久久精品18亚洲精品_国产精自产拍久久久久久_亚洲色图国产精品_91精品国产网站_中文字幕欧美日韩精品_国产精品久久久久久亚洲调教_国产精品久久一区_性夜试看影院91社区_97在线观看视频国产_68精品久久久久久欧美_欧美精品在线观看_国产精品一区二区久久精品_欧美老女人bb

首頁 > 學院 > 開發設計 > 正文

R 筆記

2019-11-10 20:08:49
字體:
來源:轉載
供稿:網友

begin note

調用命令:r CMD BATCH D:/RWORKSPACE/CMD_TEST.R  (注意 CMD BATCH 都要大寫)

ls(): 列出所有的變量名稱

ls(pattern ='v'): 根據pattern匹配

rm('xxx') 刪除變量

 rm(list=ls()) 刪除所有的變量> ls()character(0)

集合轉數組:

> vector1 <- c(5,9,3)> vector2 <- c(10,11,12,13,14,15)> column.names <- c("COL1","COL2","COL3")> row.names <- c("ROW1","ROW2","ROW3")> matrix.names <- c("Matrix1","Matrix2")> result <- array(c(vector1,vector2),dim=c(3,3,2),dimnames = list(column.names,row.names,matrix.names))> PRint(result), , Matrix1     ROW1 ROW2 ROW3COL1    5   10   13COL2    9   11   14COL3    3   12   15, , Matrix2     ROW1 ROW2 ROW3COL1    5   10   13COL2    9   11   14COL3    3   12   15

> # Print the third row of the second matrix of the array.> print(result[3,,2])ROW1 ROW2 ROW3    3   12   15 > > # Print the element in the 1st row and 3rd column of the 1st matrix.> print(result[1,3,1])[1] 13> > # Print the 2nd Matrix.> print(result[,,2])     ROW1 ROW2 ROW3COL1    5   10   13COL2    9   11   14COL3    3   12   15數組的操作:

# Create two vectors of different lengths.vector1 <- c(5,9,3)vector2 <- c(10,11,12,13,14,15)# Take these vectors as input to the array.array1 <- array(c(vector1,vector2),dim=c(3,3,2))# Create two vectors of different lengths.vector3 <- c(9,1,0)vector4 <- c(6,0,11,3,14,1,2,6,9)array2 <- array(c(vector1,vector2),dim=c(3,3,2))# create matrices from these arrays.matrix1 <- array1[,,2]matrix2 <- array2[,,2]# Add the matrices.result <- matrix1+matrix2print(result)
# Create two vectors of different lengths.vector1 <- c(5,9,3)vector2 <- c(10,11,12,13,14,15)# Take these vectors as input to the array.new.array <- array(c(vector1,vector2),dim=c(3,3,2))print(new.array)# Use apply to calculate the sum of the rows across all the matrices.計算所有矩陣每行的和result <- apply(new.array, c(1), sum)print(result)
# Create a vector as input.data <- c("East","West","East","North","North","East","West","West","West","East","North")print(data)print(is.factor(data))# Apply the factor function.factor_data <- factor(data)print(factor_data)print(is.factor(factor_data))#判斷是否是factor  , true
# Create the vectors for data frame.height <- c(132,151,162,139,166,147,122)weight <- c(48,49,66,53,67,52,40)gender <- c("male","male","female","female","male","female","male")# Create the data frame.input_data <- data.frame(height,weight,gender)print(input_data)# Test if the gender column is a factor.  a row of data frame is a factor, like thisprint(is.factor(input_data$gender))# Print the gender column so see the levels.print(input_data$gender)
data <- c("East","West","East","North","North","East","West","West","West","East","North")# Create the factorsfactor_data <- factor(data)print(factor_data)# Apply the factor function with required order of the level. 改變了level的順序new_order_data <- factor(factor_data,levels = c("East","West","North"))print(new_order_data)
gl(n, k, labels)

以下是所使用的參數的說明:

n 是一個整數來給出級別數k 是一個整數給出重復的數量labels 為所得到的因子級別標簽的向量。

示例

v <- gl(3, 4, labels = c("Tampa", "Seattle","Boston"))print(v)

創建數據幀

# Create the data frame.emp.data <- data.frame(	emp_id = c (1:5), 	emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),	salary = c(623.3,515.2,611.0,729.0,843.25), 	start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11","2015-03-27")),	stringsAsFactors=FALSE			)# Print the data frame.			print(emp.data) 

str(emp.data)
print(summary(emp.data))  
# Extract Specific columns.提取數據幀的列result <- data.frame(emp.data$emp_name,emp.data$salary)print(result)
result <- emp.data[1:2,]#提取數據的前兩行和所有的列print(result)
result <- emp.data[c(3,5),c(2,4)]# 提取3, 5 行的第2,4 列的數據print(result)
# Add the "dept" coulmn.添加列emp.data$dept <- c("IT","Operations","IT","HR","Finance")v <- emp.dataprint(v)

# Create the first data frame.emp.data <- data.frame(	emp_id = c (1:5), 	emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),	salary = c(623.3,515.2,611.0,729.0,843.25), 	start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11","2015-03-27")),	dept=c("IT","Operations","IT","HR","Finance"),	stringsAsFactors=FALSE			)# Create the second data frame, 添加行記錄emp.newdata <- 	data.frame(	emp_id = c (6:8), 	emp_name = c("Rasmi","Pranab","Tusar"),	salary = c(578.0,722.5,632.8), 	start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")),	dept = c("IT","Operations","Fianance"),	stringsAsFactors=FALSE				)# Bind the two data frames.emp.finaldata <- rbind(emp.data,emp.newdata)print(emp.finaldata)
install.packages(file_name_with_path, repos = NULL, type="source")# Install the package named "xml", 安裝packageinstall.packages("E:/XML_3.98-1.3.zip", repos = NULL, type="source")

# Create vector objects.city <- c("Tampa","Seattle","Hartford","Denver")state <- c("FL","WA","CT","CO")zipcode <- c(33602,98104,06161,80294)# Combine above three vectors into one data frame. cbind is column bind 行的結列addresses <- cbind(city,state,zipcode)# Print a header.cat("# # # # The First data frame/n") # Print the data frame.print(addresses)# Create another data frame with similar columnsnew.address <- data.frame(   city = c("Lowry","Charlotte"),   state = c("CO","FL"),   zipcode = c("80230","33949"),   stringsAsFactors=FALSE)# Print a header.cat("# # # The Second data frame/n") # Print the data frame.print(new.address)# Combine rows form both the data frames. rbind is row bind 結合行all.addresses <- rbind(addresses,new.address)# Print a header.cat("# # # The combined data frame/n") # Print the result.print(all.addresses)

melt and cast 

熔化和轉換

R語言編程的最有趣的地方是關于改變多個步驟中的數據的形狀來獲得所希望的形狀。用來做這種函數被稱為 melt() 和 cast()。

我們認為數據集被稱為 ships 出現在庫被稱為 "MASS".

library(MASS)print(ships)

當我們上面的代碼執行時,它產生以下結果:

   type year period service incidents1     A   60     60     127         02     A   60     75      63         03     A   65     60    1095         34     A   65     75    1095         45     A   70     60    1512         6..........................8     A   75     75    2244        119     B   60     60   44882        3910    B   60     75   17176        2911    B   65     60   28609        58........................17    C   60     60    1179         118    C   60     75     552         119    C   65     60     781         0........................

融化數據

現在,我們融化數據需要組織其轉換類型(type), 并且 year 到多行以外的所有列。

molten.ships <- melt(ships, id = c("type","year"))print(molten.ships)

當我們上面的代碼執行時,它產生以下結果:

    type year  variable value1      A   60    period    602      A   60    period    753      A   65    period    604      A   65    period    75........................9      B   60    period    6010     B   60    period    7511     B   65    period    6012     B   65    period    7513     B   70    period    60......................41     A   60   service   12742     A   60   service    6343     A   65   service  1095......................70     D   70   service  120871     D   75   service     072     D   75   service  205173     E   60   service    4574     E   60   service     075     E   65   service   789......................101    C   70 incidents     6102    C   70 incidents     2103    C   75 incidents     0104    C   75 incidents     1105    D   60 incidents     0106    D   60 incidents     0......................

轉換數據

我們可以轉化數據轉換成在創建每種類型的 ships 每年的匯總的新形式。它是通過使用 case()函數。

recasted.ship <- cast(molten.ships, type+year~variable,sum)print(recasted.ship)

當我們上面的代碼執行時,它產生以下結果:

   type year period service incidents1     A   60    135     190         02     A   65    135    2190         73     A   70    135    4865        244     A   75    135    2244        115     B   60    135   62058        686     B   65    135   48979       1117     B   70    135   20163        568     B   75    135    7117        189     C   60    135    1731         210    C   65    135    1457         111    C   70    135    2731         812    C   75    135     274         113    D   60    135     356         014    D   65    135     480         015    D   70    135    1557        1316    D   75    135    2051         417    E   60    135      45         018    E   65    135    1226        1419    E   70    135    3318        1720    E   75    135     542         1

讀一個CSV文件

以下是 read.csv()函數的一個簡單的例子,它讀取在當前工作目錄的可用的 CSV 文件:

data <- read.csv("input.csv")print(data)
data <- read.csv("input.csv")#分析data的行列情況print(is.data.frame(data))print(ncol(data))print(nrow(data))
# Get the person detail having max salary. 求最高工資記錄的具體情況retval <- subset(data, salary == max(salary))print(retval)

# Create a data frame.data <- read.csv("input.csv")info <- subset(data, salary > 600 & dept == "IT")#工資大于600 并且是IT部門的員工print(info)
# Create a data frame.data <- read.csv("input.csv")retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))#生日大于2014-1-1日print(retval)
# Load the packages required to read XML files.library("XML")library("methods")# Convert the input xml file to a data frame.xmldataframe <- xmlToDataFrame("input.xml")#加載xml里面的數據print(xmldataframe)
# Load the package required to read JSON files.library("rjson")# Give the input file name to the function.result <- fromJSON(file="input.json")# Print the result.print(result)
# Load the package required to read JSON files.library("rjson")# Give the input file name to the function.result <- fromJSON(file="input.json")# Convert JSON file to a data frame.json_data_frame <- as.data.frame(result)#json字符類型 到frame 幀print(json_data_frame)
# Create a connection Object to MySQL database.# We will connect to the sampel database named "sakila" that comes with MySql installation. mysqlconnection = dbConnect(MySQL(), user='root', passWord='', dbname='sakila', host='localhost')# List the tables available in this database. dbListTables(mysqlconnection)
# Query the "actor" tables to get all the rows.輸入sqlresult = dbSendQuery(mysqlconnection, "select * from actor")# Store the result in a R data frame object. n=5 is used to fetch first 5 rows.現在查詢的條數data.frame = fetch(result, n=5)print(data.fame)
# Create the function. 找到向量中出現次數最多的元素getmode <- function(v) {	uniqv <- unique(v)	uniqv[which.max(tabulate(match(v, uniqv)))]}# Create the vector with numbers.v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)# Calculate the mode using the user function. result <- getmode(v)print(result)

K線圖:

library(quantmod)sse<-getSymbols('^SSEC', from='2015-1-1',to=Sys.Date(), src='yahoo')SSEC.m <- to.monthly(SSEC)tail(SSEC.m)candleChart(SSEC.m,theme = 'white')


發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
亚洲香蕉成人av网站在线观看_欧美精品成人91久久久久久久_久久久久久久久久久亚洲_热久久视久久精品18亚洲精品_国产精自产拍久久久久久_亚洲色图国产精品_91精品国产网站_中文字幕欧美日韩精品_国产精品久久久久久亚洲调教_国产精品久久一区_性夜试看影院91社区_97在线观看视频国产_68精品久久久久久欧美_欧美精品在线观看_国产精品一区二区久久精品_欧美老女人bb
国产精品日韩精品| 98精品国产高清在线xxxx天堂| 日韩精品在线观看一区| 国产精品亚洲美女av网站| 热re99久久精品国产66热| 韩国三级电影久久久久久| 欧美怡春院一区二区三区| 欧美日韩加勒比精品一区| 国产成人在线视频| 最新的欧美黄色| 国产精品永久免费视频| 亚洲综合一区二区不卡| 欧美日韩国内自拍| 日韩在线一区二区三区免费视频| 亚洲国产精彩中文乱码av| 亚洲人成免费电影| 亚洲一区二区三区xxx视频| 激情亚洲一区二区三区四区| 国产日韩欧美夫妻视频在线观看| 国产精品a久久久久久| 日韩av手机在线看| 国产一级揄自揄精品视频| 2021久久精品国产99国产精品| 日韩免费观看av| 亚洲天堂网在线观看| 亚洲欧美第一页| 久久久久久国产精品久久| 日韩中文av在线| 久久久人成影片一区二区三区观看| 欧美精品午夜视频| 欧美日韩国产精品一区| 欧美情侣性视频| 97在线视频免费看| 日韩精品免费视频| 久久中文久久字幕| 国产欧美日韩高清| 国产精品久久久久免费a∨| 色777狠狠综合秋免鲁丝| 欧美性xxxx极品hd欧美风情| 国产ts一区二区| 久久99久久99精品免观看粉嫩| 欧美日韩xxx| 国产成人精品久久久| 成人在线免费观看视视频| 中文字幕亚洲一区二区三区五十路| 久久精品视频在线观看| 91精品国产一区| 91精品久久久久久久久久入口| 97精品久久久中文字幕免费| 欧美在线视频播放| 中文字幕9999| 91色视频在线观看| 亚洲美女在线观看| 精品激情国产视频| 国产精品美女网站| 91亚洲va在线va天堂va国| 国产91在线高潮白浆在线观看| 日韩最新免费不卡| 日韩亚洲欧美中文高清在线| 亚洲图片制服诱惑| 日韩成人在线电影网| 久久久精品一区二区三区| 日韩免费在线视频| 精品亚洲一区二区三区四区五区| 中文字幕九色91在线| 欧美孕妇孕交黑巨大网站| 欧美激情视频网站| 91视频8mav| 成人福利网站在线观看11| 亚洲va欧美va国产综合久久| 欧美激情亚洲国产| 在线观看国产精品91| 亚洲国产精彩中文乱码av在线播放| 国产91免费看片| 久久精品中文字幕一区| 国产精品视频一区二区高潮| 国产欧美一区二区三区在线看| 成人中文字幕在线观看| 精品国产视频在线| 538国产精品视频一区二区| 国产精品毛片a∨一区二区三区|国| 成人免费视频网址| 日韩天堂在线视频| 亚洲精品v欧美精品v日韩精品| 亚洲图片欧洲图片av| 午夜精品一区二区三区在线| 久久久伊人欧美| 国产精品一二三在线| 精品久久香蕉国产线看观看gif| 日韩电影中文 亚洲精品乱码| 欧美成人精品一区二区| 国产做受69高潮| 色与欲影视天天看综合网| 国产精品99久久久久久久久| 久久久久久亚洲精品中文字幕| 欧美亚洲国产视频小说| 欧美色xxxx| 亚洲福利精品在线| 国产精品一区电影| 亚洲热线99精品视频| 国产精品久久视频| 成人激情在线播放| 91九色单男在线观看| 欧美电影在线播放| 欧美巨大黑人极品精男| 97超碰蝌蚪网人人做人人爽| 国产精品看片资源| 日韩在线中文视频| 国产精品久久久久久久久久ktv| 久久精品国产亚洲一区二区| 国产一区二区三区直播精品电影| 久久久成人的性感天堂| 亚洲国产三级网| 欧美黑人性生活视频| 97超视频免费观看| 久久香蕉精品香蕉| 性欧美视频videos6一9| 欧美黑人性猛交| 日韩精品中文字幕有码专区| 日韩av不卡在线| 日韩精品在线观看一区| 综合激情国产一区| 欧美激情亚洲激情| 欧美日韩国产成人在线观看| 日韩av在线播放资源| 亚洲黄色av女优在线观看| 亚洲成人网av| 欧美大片欧美激情性色a∨久久| 欧美色欧美亚洲高清在线视频| 日韩中文字幕在线| 九九久久精品一区| 精品国内亚洲在观看18黄| 精品久久久在线观看| 日韩中文娱乐网| 国产精品第10页| 亚洲精品久久久久| 国产精品欧美日韩久久| 久久躁狠狠躁夜夜爽| 欧美电影在线观看网站| 国产精品美女www| 秋霞成人午夜鲁丝一区二区三区| 久久激情五月丁香伊人| 国产精品观看在线亚洲人成网| 亚洲最大成人网色| 永久免费精品影视网站| 97香蕉超级碰碰久久免费的优势| 国产精品爽爽ⅴa在线观看| 久久精品视频免费播放| 久久精品一本久久99精品| 亚洲福利小视频| 成人午夜激情免费视频| 日韩激情片免费| 国产香蕉一区二区三区在线视频| 性夜试看影院91社区| 欧美性猛交xxxx乱大交极品| 国产精品1区2区在线观看| 国产欧美亚洲视频| 成人久久一区二区三区| 亚洲日本成人女熟在线观看| 亚洲福利小视频| 国产亚洲在线播放| 91精品久久久久久久久不口人| 亚洲综合国产精品| 亚洲偷欧美偷国内偷|