think: 1 今天上午學習了樹中的堆結構將一些對結構的基本操作寫了寫,記錄下來,后續繼續優化。
#include <stdio.h>#include <string.h>#include <stdlib.h>#define ElementType int#define MAXDATA 20000/* 根據具體情況定義為大于堆中所有可能元素的值*/#define MINDATA -1/* 根據具體情況定義為小于堆中所有可能元素的值*/typedef struct HNode *Heap;///堆的類型定義struct HNode{ ElementType *Data;//存儲元素的數組 int Size;//堆中當前元素個數 int Capacity;//堆的最大容量};typedef Heap MaxHeap;//最大堆typedef Heap MinHeap;//最小堆MaxHeap CreatHeap(int MaxSize){/* 創建容量為MaxSize的空的最大堆*/ MaxHeap H = (MaxHeap)malloc(sizeof(struct HNode)); H->Data = (ElementType *)malloc((MaxSize+1)*sizeof(ElementType)); H->Size = 0; H->Capacity = MaxSize; //H->Data[0] = MAXDATA; return H;}void MaxInsert(MaxHeap H, ElementType X){//將元素X插入最大堆H H->Data[0] = MAXDATA;//定義“哨兵” int i; i = ++H->Size; for(;H->Data[i/2] < X; i /= 2) { H->Data[i] = H->Data[i/2]; } H->Data[i] = X;}void MinInsert(MinHeap H, ElementType X){//將元素X插入最小堆H H->Data[0] = MINDATA;//定義“哨兵” int i; i = ++H->Size; for(;H->Data[i/2] > X; i /= 2) { H->Data[i] = H->Data[i/2]; } H->Data[i] = X;}ElementType DeleteMax(MaxHeap H){/* 從最大堆中取出鍵值為最大的元素,并刪除一個結點*/ int Parent, Child; ElementType MaxItem, X; MaxItem = H->Data[1]; X = H->Data[H->Size--]; for(Parent = 1; Parent*2 <= H->Size; Parent = Child) { Child = Parent*2; if((Child != H->Size) && H->Data[Child] < H->Data[Child+1]) Child++; if(X >= H->Data[Child]) break; else H->Data[Parent] = H->Data[Child]; } H->Data[Parent] = X; return MaxItem;}ElementType DeleteMin(MinHeap H){/* 從最小堆中取出一個鍵值最小的元素,并刪除一個結點*/ int Parent, Child; ElementType MinItem, X; MinItem = H->Data[1]; X = H->Data[H->Size--]; for(Parent = 1; Parent*2 <= H->Size; Parent = Child) { Child = Parent*2; if((Child != H->Size) && H->Data[Child] > H->Data[Child+1]) Child++; if(X <= H->Data[Child]) break; else H->Data[Parent] = H->Data[Child]; } H->Data[Parent] = X; return MinItem;}void PercDown1(MaxHeap H, int p){/* 下濾, 將H中以H->Data[p]為根的子堆調整為最大堆*/ int Parent, Child; ElementType X; X = H->Data[p];//取出根節點存放的值 for(Parent = p; Parent*2 < H->Size; Parent = Child) { Child = Parent*2; if((Child != H->Size) && H->Data[Child] < H->Data[Child+1]) Child++;/* Child指向左右結點中的較大者*/ if(X >= H->Data[Child])//找到了合適的位置 break; else//下濾X H->Data[Parent] = H->Data[Child]; } H->Data[Parent] = X;}void BuildHeap1(MaxHeap H){/* 調整H->Data[]中的元素,使得滿足最大堆的有序性*/ /* 這里假設所有H->Size個元素已經存在H->Data[]中*/ int i; /* 從最后一個結點的父結點開始,到根結點1*/ for(i = H->Size/2; i > 0; i--) PercDown1(H, i);}void PercDown2(MinHeap H, int p){/* 下濾, 將H中以H->Data[p]為根的子堆調整為最小堆*/ int Parent, Child; ElementType X; X = H->Data[p];//取出根節點存放的值 for(Parent = p; Parent*2 <= H->Size; Parent = Child) { Child = Parent*2; if((Child != H->Size) && H->Data[Child] > H->Data[Child+1]) Child++;/* Child指向左右結點中的較小者*/ if(X <= H->Data[Child])//找到了合適的位置 break; else//下濾X H->Data[Parent] = H->Data[Child]; } H->Data[Parent] = X;}void BuildHeap2(MinHeap H){/* 調整H->Data[]中的元素,使得滿足最小堆的有序性*/ /* 這里假設所有H->Size個元素已經存在H->Data[]中*/ int i; /* 從最后一個結點的父結點開始,到根結點1*/ for(i = H->Size/2; i > 0; i--) PercDown2(H, i);}新聞熱點
疑難解答