原文:http://www.cnblogs.com/didea/p/6044321.htmlOpenCV中SVD分解函數compute
C++: static void SVD::compute(InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0 ) src – Decomposed matrix w – Computed singular values u – Computed left singular vectors v – Computed right singular vectors vt – Transposed matrix of right singular values flags – Opertion flags - see SVD::SVD(). //參數分別為輸入圖像,輸出圖像,壓縮比例void SVDRESTRUCT(const cv::Mat &inputImg, cv::Mat &outputImg, double theratio){ cv::Mat tempt; cv::Mat U, W, V; inputImg.convertTo(tempt, CV_32FC1); cv::SVD::compute(tempt, W, U, V); cv::Mat w = Mat::zeros(Size(W.rows, W.rows), CV_32FC1); int len = theratio*W.rows; for (int i = 0; i < len; ++i) w.ptr<float>(i)[i] = W.ptr<float>(i)[0]; cv::Mat result = U*w*V; result.convertTo(outputImg, CV_8UC1);}int main(int argc, char* argv[]){ cv::Mat scrX = imread("2.jpg",0); cv::Mat resultm; SVDRESTRUCT(scrX, resultm,0.05); cv::imshow("1",resultm); waitKey(0); return 0;} SVD本身是個O(N^3)的算法,大數據處理比較慢。原圖如下:
原圖重構如下:
0.1壓縮如下:
0.01壓縮如下:
![]()
新聞熱點
疑難解答